Abstract:
A method and an apparatus for transmitting multimedia broadcast single-frequency network (MBSFN) subframe configuration information of neighboring cells in a wireless system is provided. The method comprises: transmitting, by a base station of a serving cell, MBSFN subframe configuration information of the serving cell to a UE which accepts services from the serving cell via a broadcast control channel (BCCH); transmitting information on a subset relationship of MBSFN subframe configurations of the neighboring cells relative to the MBSFN subframe configuration of the serving cell to the UE which accepts services from the serving cell via the broadcast control channel (BCCH); performing, by the UE, measurements on the neighboring cells according to the subframe configuration information of the serving cell and the information on the subset relationship of the MBSFN subframe configurations of the neighboring cells relative to the MBSFN subframe configuration of the serving cell.
Abstract:
A method and an apparatus for efficiently transmitting or reporting a Power Headroom Report (PHR) of a User Equipment (UE) are provided. The method of transmitting the PHR of the UE in a mobile communication system includes configuring an extended PHR including an indicator corresponding to a variation factor of a maximum transmission power of the UE, and transmitting the extended PHR from the UE to a Base Station (BS). The BS may be notified of a maximum transmission power of the UE and a variation factor corresponding to the maximum transmission power in order to enable efficient scheduling.
Abstract:
An apparatus and method for matching the radio channel measurement timing of Minimization of Drive Test (MDT) cycle with timings of the Discontinuous Reception (DRX) cycle are provided. The radio channel measurement method of a terminal according to the present invention includes configuring a DRX cycle, receiving a Minimization of Drive Test (MDT) cycle, comparing the DRX cycle and the MDT cycle, measuring, when the MDT cycle is an integer multiple of the DRX cycle, the radio channel at DRX timings matching with MDT timings, and storing a result of the measurement.
Abstract:
A random access procedure control method and apparatus is provided for controlling a random access procedure efficiently in a mobile communication system supporting carrier aggregation. The method for controlling random access procedure of a terminal in a wireless communication system having a primary cell and at least one secondary cell includes initiating a random access procedure in the primary cell and the at least one secondary cells, detecting a random access failure of a terminal performing the random access procedure, determining whether the random access failure is detected in the primary cell or the at least one secondary cell, and determining whether to continue the random access procedure according to a result of the determining of whether the random access failure is detected.
Abstract:
A method and apparatus for configuring Power Headroom Report (PHR) of a User Equipment (UE) efficiently in a mobile communication system supporting carrier aggregation are provided. The method includes generating a header including a LCID for identifying extended PHR and L indicating a length of the extended PHR, and inserting Power Headrooms (PHs) of multiple activated carriers into the extended PHR of one of the carriers.
Abstract:
A method and an apparatus are provided for receiving information by a terminal in a wireless communication system. The method includes transmitting, to a base station, a request message including a preamble; receiving, from the base station, a response message including uplink resource information determined based on the preamble; determining at least one of downlink channel information and uplink transmission capability corresponding to a specific uplink transmission; and transmitting, if an information request message is received from the base station, the at least one of the downlink channel information and the uplink transmission capability to the base station.
Abstract:
A method and an apparatus for information reception of a base station in a communication system are provided. The method includes transmitting a request message including a request for at least one of Random Access Channel (RACH) information, Radio Link Failure (RLF) information and Minimization of Drive Test (MDT) information, and receiving a response message comprising response information via Signaling Radio Bearer (SRB) 2 in response to the request message, if the MDT information is present in the response information.
Abstract:
To solve the above-mentioned problem, the method for transmitting and receiving a signal by user equipment (UE) through one or more cells, according to one embodiment of the present specification, comprises the steps of: receiving, from a base station, a first message indicating whether one or more cells usable by the UE are enabled; determining which cells to enable or disable on the basis of the first message; and enabling or disabling the selected cells. According to the embodiment of the present specification, by aggregating carriers amongst different base stations, a possibility for the UE to transmit and receive high-speed data through carrier aggregation can increase.
Abstract:
A method and an apparatus for efficiently reporting user equipment (UE) are provided. A method of transmitting Power Headroom Report (PHR) of UE in a mobile communication system, includes configuring an evolved PHR including an indicator with respect of a variation factor of maximum transmission power of the UE, and transmitting the evolved PHR to an eNB. An eNB may know maximum transmission power of an UE and a variation factor thereof to enable efficient scheduling.
Abstract:
A radio link failure detection method of a user equipment transitioning between a Discontinuous Reception (DRX) mode and non-DRX mode cyclically in a wireless communication system includes transitioning between a Discontinuous Reception (DRX) mode and a non-DRX mode in a wireless communication system. The method also includes adjusting, when a mode transition occurs, a size of a monitoring window for a transitioned operation mode; reporting a radio channel condition acquired by monitoring and averaging the channel condition within the monitoring window; and repeating adjustment of the monitoring window size and report of the radio channel condition while moving the monitoring window as time progress.