Abstract:
A semiconductor device may include a bottom sub-electrode on a substrate, a top sub-electrode on the bottom sub-electrode, a dielectric layer covering the bottom and top sub-electrodes, and a plate electrode on the dielectric layer. The top sub-electrode may include a step extending from a side surface thereof, which is adjacent to the bottom sub-electrode, to an inner portion of the top sub-electrode. The top sub-electrode may include a lower portion at a level that is lower than the step and an upper portion at a level which is higher than the step. A maximum width of the lower portion may be narrower than a minimum width of the upper portion. The maximum width of the lower portion may be narrower than a width of a top end of the bottom sub-electrode. The bottom sub-electrode may include a recess in a region adjacent to the top sub-electrode.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. According to the disclosure, an antenna module includes a first substrate layer on which at least one substrate is stacked; an antenna coupled to an upper end surface of the first substrate layer; a second substrate layer having an upper end surface coupled to a lower end surface of the first substrate layer and on which at least one substrate is stacked; and a radio frequency (RF) element coupled to a lower end surface of the second substrate layer.
Abstract:
A portable communication device includes a touch screen display; first communication circuitry configured to support a long term evolution (LTE) communication; second communication circuitry configured to support a new radio (NR) communication; a memory storing operator information indicating an operator of a mobile network and operator policy information; and at least one processor configured to receive, from an LTE base station corresponding to the mobile network via the first communication circuitry, a system information block (SIB) and a non-access stratum (NAS) message, determine, based on the SIB and the NAS message, whether dual connectivity of the LTE communication and the NR communication is available for the portable communication device, based on the operator information, the operator policy information and determining that the dual connectivity is available for the portable communication device, select an indicator from a first indicator and a second indicator, the first indicator indicating that the portable communication device is connected with the mobile network via the LTE communication, the second indicator indicating that the NR communication is available for the portable communication device to connect with the mobile network, and display the selected indicator via the touch screen display.
Abstract:
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. According to the disclosure, an antenna module includes a first substrate layer on which at least one substrate is stacked; an antenna coupled to an upper end surface of the first substrate layer; a second substrate layer having an upper end surface coupled to a lower end surface of the first substrate layer and on which at least one substrate is stacked; and a radio frequency (RF) element coupled to a lower end surface of the second substrate layer.
Abstract:
Provided is an electronic device. The electronic device may include: a user interface; a processor operatively connected to the user interface; and a memory operatively connected to the processor, wherein the memory may store instructions that, when executed, cause the processor to control the electronic device to: receive an input via the user interface; determine a task including plural actions based on the input; execute a first action among the plural actions of the determined task; obtain context information related to the task while executing the first action; determine at least one first threshold associated with the first action based at least in part on the obtained context information; and determine the result of the first action based on the execution of the first action being completed based on the at least one first threshold.
Abstract:
To generate a beam book, an operating method of an electronic device may include acquiring measurement information of a plurality of antenna in a first direction, determining offset values between phase values per antenna for the first direction, determining phase values which satisfy the offset values and maximize receive power for the first direction, and determining phase values for a second direction, based on the offset values and the phase values for the first direction.
Abstract:
A method and apparatus capable of adjusting a signal level in a wireless communication system are provided. An electronic device includes an oscillator configured to output a local oscillator (LO) signal, a mixer configured to convert a frequency band of a first signal based on the LO signal and output a third signal, and a feedback circuit configured to output a feedback signal for adjusting a magnitude of the LO signal, wherein the mixer is further configured to adjust a magnitude of LO signal based on the feedback signal.
Abstract:
According to certain embodiments, an electronic device comprises at least one processor; and a memory operatively connected with the at least one processor and storing a plurality of identifiers related to attributes of a communication bearer. The memory stores instructions that, when executed by the at least one processor, cause the electronic device to: receive information related to multi radio access technology (RAT) dual connectivity (MR-DC) from a first base station (BS) connected with a first core network, using a first frequency band; transmit a first packet data network (PDN) connectivity request comprising a first identifier among the plurality of identifiers and a second PDN connectivity request comprising a second identifier among the plurality of identifiers to the first BS, using the first frequency band; establish a first PDN session with the first BS and the first core network, in which the first PDN session provides a communication bearer having a first attribute related to the first identifier; establish a second PDN session with the first BS and the first core network, in which the second PDN session provides a communication bearer having a second attribute related to the second identifier; receive from the first BS, a message indicating that the first BS is connected with a second BS; and communicate using signals with the second BS and the first core network through the second PDN session based on at least a part of the message, using the second frequency band.
Abstract:
A Wireless Fidelity (Wi-Fi) Direct connection method for a User Equipment (UE) is provided. The method includes receiving a probe signal from at least one device; comparing location information in the probe signal with location information of the UE; and performing the Wi-Fi Direct connection for the at least one device transmitting the probe signal including location information that is the same as that of the UE. In addition, a method of supporting a Wi-Fi Direct connection for a wireless Access Point (AP) is provided. The method includes receiving common location information from at least one gateway; and transmitting unique identification information of the wireless AP and the common location information to at least one Wi-Fi Direct support device, wherein the unique identification information and the common location information are used to create location information, which is included in a probe signal, in the Wi-Fi Direct support device.
Abstract:
Provided is a 5G or 6G communication system for supporting higher data rates than a 4G communication system. A method of a terminal in an NTN includes receiving a first broadcast message comprising at least part of synchronization information from a satellite at a first time point, receiving a second broadcast message comprising a remainder of the synchronization information from the satellite at a second time point, receiving a third broadcast message comprising location information related to a location of the satellite from the satellite at a third time point, determining a first location of the satellite at the first time point, a second location of the satellite at the second time point, and a third location of the satellite at the third time point, based on the first broadcast message, the second broadcast message, and the third broadcast message, determining a TA value related to a distance between the terminal and the satellite, based on the first location, the second location, and the third location, adjusting a transmission time point of an initial message for initial access to the satellite, based on the determined TA value, and transmitting the initial message to the satellite at the adjusted transmission time point.