摘要:
Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.
摘要:
The present invention involves the use of a multi-stage membrane system for gas, vapor, and liquid separations. In this multi-stage membrane system, high selectivity and high permeance or at least high selectivity polybenzoxazole membranes or cross-linked polybenzoxazole membranes are applied for a pre-membrane or both the pre-membrane and the secondary membrane. A primary membrane can be from conventional glassy polymers. This multi-stage membrane system can reduce inter-stage compression cost, increase product recovery and product purity for gas, vapor, and liquid separations. It can also save the cost compared to the system using all the high cost polybenzoxazole membranes or cross-linked polybenzoxazole membranes.
摘要:
The present invention discloses a new type of high performance polymer membranes derived from aromatic polyimide membranes and methods for making and using these membranes. The polymer membranes described in the present invention were derived from aromatic polyimide membranes by crosslinking followed by thermal treating. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The high performance polymer membranes showed significantly improved permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The high performance polymer membranes also showed significantly improved selectivity for gas separations compared to the thermal-treated but non-UV-crosslinked aromatic polyimide membranes. The high performance polymer membranes of the present invention are suitable for liquid, gas, and vapor separations, as well as for catalysis and fuel cell applications.
摘要:
In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry. The high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes of the present invention are suitable for a variety of liquid, gas, and vapor separations.
摘要:
The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
摘要:
The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 200° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite. These polybenzoxazole-based mixed matrix membranes exhibit high thermal stability, significantly higher selectivity than the neat polybenzoxazole polymer membranes, and much higher permeability than traditional mixed matrix membranes.
摘要:
The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 300° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite. These polybenzoxazole-based mixed matrix membranes exhibit high thermal stability, significantly higher selectivity than the neat polybenzoxazole polymer membranes, and much higher permeability than traditional mixed matrix membranes.
摘要:
The present invention discloses fluoropolymer coated membranes and methods for making and using these membranes. The fluoropolymer coated membranes described in the current invention are prepared by coating a porous asymmetric membrane layer with a thin layer of fluoropolymer coating. The porous asymmetric membrane layer comprises an asymmetric cellulosic membrane, an asymmetric polymer membrane, or an asymmetric molecular sieve/polymer mixed matrix membrane with a low selectivity and high permeance. The fluoropolymer coating improves the selectivity of the porous asymmetric membrane layer and maintains the membrane performance with time. The fluoropolymer coated membranes are suitable for a variety of liquid, gas, and vapor separations such as desalination of water by reverse osmosis, non-aqueous liquid separation such as deep desulfurization of gasoline and diesel fuels, ethanol/water separations, pervaporation dehydration of aqueous/organic mixtures, CO2/CH4, CO2/N2, H2/CH4, O2/N2, olefin/paraffin, iso/normal paraffins separations, and other light gas mixture separations.
摘要:
The present invention discloses an approach for making mixed matrix membranes (MMMS) and methods for using these membranes. These MMMs contain a continuous polymer matrix and dispersed microporous molecular sieve particles. This invention also pertains to control of the thickness of the thin dense selective mixed matrix membrane layer that is equal to or greater than the particle size of the largest molecular sieve particles for making large scale asymmetric MMMs. In particular, the invention is directed to making asymmetric flat sheet MMM by a phase inversion technique. The MMMs of the present invention exhibit at least 20% increase in selectivity compared to the polymer membranes prepared from their corresponding continuous polymer matrices. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.
摘要:
The present invention discloses a method for making mixed matrix membranes (MMMs) and methods for using these membranes. These MMMs contain a continuous polymer matrix and dispersed microporous molecular sieve particles. This invention also pertains to control the thickness of the thin dense selective mixed matrix layer equal to or greater than the particle size of the largest molecular sieve particles for making large scale asymmetric MMMs. In particular, the invention is directed to make asymmetric hollow fiber MMM by a phase inversion technique. The MMMs of the present invention exhibit at least 20% increase in selectivity compared to the polymer membranes prepared from their corresponding continuous polymer matrices. The MMMs of the present invention are suitable for a variety of liquid, gas, and vapor separations.