摘要:
A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT) or echocardiography image data, of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A patient specific anatomical heart model is generated by integrating the individual models for each of the heart components.
摘要:
A system and method for defining and tracking a deformable shape of a candidate anatomical structure wall in a three dimensional (3D) image is disclosed. The shape of the candidate anatomical structure is represented by a plurality of labeled 3D landmark points. At least one 3D landmark point of the deformable shape in an image frame is defined. A 3D cuboid is defined around the detected 3D landmark point. For each landmark point associated with the anatomical structure, its location and location uncertainty matrix is estimated in subsequent frames relative to the reference anatomical structures. A shape model is generated to represent dynamics of the deformable shape in subsequent image frames. The shape model includes statistical information from a training data set of 3D images of representative anatomical structures. The shape model is aligned to the deformable shape of the candidate anatomical structure. The shape model is fused with the deformable shape. A current shape of the candidate anatomical structure is estimated.
摘要:
A method and system for modeling the aortic valve in 4D image data, such as 4D CT and echocardiography, is disclosed. An initial estimate of a physiological aortic valve model is determined for at least one reference frame of a 4D image sequence based on anatomic features in the reference frame. The initial estimate is refined to generate a final estimate in the reference frame. A dynamic model of the aortic valve is then generated by estimating the physiological aortic valve model for each remaining frame of the 4D image sequence based on the final estimate in the reference frame. The aortic valve can be quantitatively evaluated using the dynamic model.
摘要:
A method and system for measuring the volume of the left ventricle (LV) in a 3D medical image, such as a CT, volume is disclosed. Heart chambers are segmented in the CT volume, including at least the LV endocardium and the LV epicardium. An optimal threshold value is automatically determined based on voxel intensities within the LV endocardium and voxel intensities between the LV endocardium and the LV epicardium. Voxels within the LV endocardium are labeled as blood pool voxels or papillary muscle voxels based on the optimal threshold value. The LV volume can be measured excluding the papillary muscles based on the number of blood pool voxels, and the LV volume can be measured including the papillary muscles based on the total number of voxels within the LV endocardium.
摘要:
A method and system for vessel segmentation in fluoroscopic images is disclosed. Hierarchical learning-based detection is used to perform the vessel segmentation. A boundary classifier is trained and used to detect boundary pixels of a vessel in a fluoroscopic image. A cross-segment classifier is trained and used to detect cross-segments connecting the boundary pixels. A quadrilateral classifier is trained and used to detect quadrilaterals connecting the cross segments. Dynamic programming is then used to combine the quadrilaterals to generate a tubular structure representing the vessel.
摘要:
A method for detecting an object of interest in an input image includes the computer-implemented steps of: receiving an image, providing a multi-class pose classifier that identifies a plurality of pose features for estimating a pose of the object of interest, providing a plurality of cascades of serially-linked binary object feature classifiers, each cascade corresponding to different poses of the object of interest in the input image, selecting at least one of the cascades using the estimated pose, and employing the selected cascades to detect instances of the object of interest in the image.
摘要:
A method for segmenting and measuring anatomical structures in fetal ultrasound images includes the steps of providing a digitized ultrasound image of a fetus comprising a plurality of intensities corresponding to a domain of points on a 3-dimensional grid, providing a plurality of classifiers trained to detect anatomical structures in said image of said fetus, and segmenting and measuring an anatomical structure using said image classifiers by applying said elliptical contour classifiers to said fetal ultrasound image, wherein a plurality of 2-dimensional contours characterizing said anatomical structure are detected. The anatomical structure measurement can be combined with measurement of another anatomical structure to estimate gestational age of the fetus.
摘要:
A system and method for tracking an object is disclosed. A video sequence including a plurality of image frames are received. A sample based representation of object appearance distribution is maintained. An object is divided into one or more components. For each component, its location and uncertainty with respect to the sample based representation are estimated. Variable-Bandwidth Density Based Fusion (VBDF) is applied to each component to determine a most dominant motion. The motion estimate is used to determine the track of the object.
摘要:
Ultrasound signal information is detected from a sequence of images. A robust automated delineation of the border of the fan or ultrasound signal information in echocardiographic or other ultrasound image sequence is provided. The processor implemented delineation uses a single image or a sequence of images to better identify ultrasound signal data. Variation through a sequence generally identifies the signal area. Projecting the filtered variation information to two likely directions identifies approximate edge locations along the sides of the border. Robust regression fits lines to the edges to find accurate border locations. The bottom of the border is identified with a histogram of the variation information as a function of radius from an intersection of the fit lines.
摘要:
A method and system for patient-specific planning and guidance of an ablation procedure for cardiac arrhythmia is disclosed. A patient-specific anatomical heart model is generated based on pre-operative cardiac image data. The patient-specific anatomical heart model is registered to a coordinate system of intra-operative images acquired during the ablation procedure. One or more ablation site guidance maps are generated based on the registered patient-specific anatomical heart model and intra-operative patient-specific measurements acquired during the ablation procedure. The ablation site guidance maps may include myocardium diffusion and action potential duration maps. The ablation site guidance maps are generated using a computational model of cardiac electrophysiology which is personalized by fitting parameters of the cardiac electrophysiology model using the intra-operative patient-specific measurements. The ablation site guidance maps are displayed by a display device during the ablation procedure.