Abstract:
A power generator includes a chemical hydride multilayer fuel cell stack. A flow path extends through the fuel cell stack to provide oxygen containing air to the fuel cell stack and to cool the fuel cell stack. A hydrogen generator is coupled to the flow path to receive water vapor from ambient air introduced into the flow path and water vapor generated by the fuel cell stack and to provide hydrogen to the fuel cell stack. A controller separately controls airflow past the fuel cell stack and water vapor provided to the hydrogen generator.
Abstract:
A power generator comprises a hydrogen producing fuel, multiple fuel cells arranged in a ring, and a rotatable ring valve. Each fuel cell has a proton exchange membrane and an opening separating the hydrogen producing fuel from ambient. The rotatable ring valve has multiple openings corresponding to the openings of the fuels cells such that ambient water is controllably prevented from entering the fuel cell by rotation of the ring valve.
Abstract:
A device includes a chemical hydride fuel pellet having a plurality of holes extending from a first end to a second end. A plurality of tubes formed of water vapor permeable and hydrogen impermeable material extend from the first end to the second end through the tubes. A container has an inlet for water vapor containing gas coupled to the first end of the tubes and an outlet coupled to the second end of the tubes. A hydrogen outlet is coupled to the fuel pellet.
Abstract:
A power generator comprising a hydrogen generator and a fuel cell stack having an anode exposed to hydrogen from the hydrogen generator and a cathode exposed to an ambient environment. Hydrophobic and hydrophilic layers are used to promote flow of water away from the cathode. A diffusion path thus separates the fuel cell cathode from the hydrogen generator. In one embodiment, water vapor generated from the fuel cell substantially matches water used by the hydrogen generator to generate hydrogen.
Abstract:
A hydrogen producing fuel comprises a chemical hydride and metal hydride. In one embodiment the chemical hydride evolves hydrogen spontaneously upon exposure to water vapor, and the metal hydride reversibly absorbs/desorbs hydrogen based on temperature and pressure. The hydrogen producing substance may be formed in the shape of a pellet and may be contained within a hydrogen and water vapor permeable, liquid water impermeable membrane.
Abstract:
An apparatus includes a power source configured to provide power to one or more external components. The power source includes one or more metallization layers. At least one of the one or more metallization layers is configured as an antenna for transmitting or receiving wireless signals. The power source could include a hydrogen generator configured to produce hydrogen gas and a fuel cell configured to generate an electrical current using the hydrogen gas. The hydrogen generator could include a fuel for producing the hydrogen gas and a selectively permeable membrane surrounding the fuel. The fuel cell could include a first electrode surrounding the selectively permeable membrane, a proton exchange membrane surrounding the first electrode, and a second electrode surrounding the proton exchange membrane. The hydrogen generator may be configured to produce the hydrogen gas using water, and the power source may consume only oxygen gas and optionally water vapor from an ambient environment.
Abstract:
A portable, calibratible gas detector includes a multi-position gas inflow limiting orifice. When this orifice is in a calibrating position, a source of calibrating gas can be activated to provide a quantity of gas that diffuses into ambient atmosphere flowing through the orifice. The calibration gas can then be sensed.
Abstract:
A blowerless heat exchanger apparatus based on micro-jet entrainment is disclosed. The heat exchanger apparatus incorporates a number of fins regularly spaced apart from each other and parallel to each other, thus letting air currents flow in the space defined between them. A dense array of micro-jet nozzles can be fabricated on the fins surface pointing to the flow direction of the air movement in order to induce increase airflow. The air from an air compressor delivers sufficient airflow on the fins surface utilizing micro-jets entrainment. The micro-jet entrainment confirms strong turbulent around the micro-jets and suggests significant heat transfer enhancement. The turbulence from the micro-jets enhance the heat transfer coefficient, potentially by an order of magnitude, therefore allowing much larger fin spacing and leads to huge reduction of flow resistance and overall power consumption.
Abstract:
A power generator includes a hydrogen producing fuel and a hydrogen storage element. A fuel cell having a proton exchange membrane separates the hydrogen producing fuel from ambient. A valve is positioned between the hydrogen storage element and the hydrogen producing fuel and the fuel cell. Hydrogen is provided to the fuel cell from the hydrogen storage element if demand for electricity exceeds the hydrogen producing capacity of the hydrogen producing fuel.
Abstract:
A power generator includes a fuel container adapted to hold a hydrogen containing fuel. A sliding valve is coupled between a fuel cell and a fuel container. A pressure responsive actuator is coupled to the two stage valve and the fuel container.