摘要:
A non-volatile memory and a method of fabricating the same are described. First, a substrate is provided. Then, a plurality of stack structures is formed on the substrate. Each stack structure comprises, from bottom to top, a bottom dielectric layer, a charge trapping layer, a top dielectric layer, a control gate and a cap layer. Next, a plurality of spacers is formed on the sidewalls of the stack structures. Thereafter, a gate dielectric layer is formed over the substrate. A word line is formed between two neighboring stack structures. After that, the cap layers in the stack structures are removed. A source and a drain are formed in the substrate beside the stack structures adjacent to the sides of each word line.
摘要:
A non-volatile memory cell is provided. The non-volatile memory includes a substrate, a gate stacked layer, an isolation layer and a conductive layer. The gate stacked layer includes a tunneling layer, a charge trapping layer, a barrier layer and a control gate layer sequentially stacked over the substrate, and the stacked gate layer has an opening therein through these layers. The isolation layer is located on the surface of the opening. The conductive layer is disposed in the opening to cover the isolation layer.
摘要:
Disclosed herein are new resistive memory devices having one or more buffers layer surrounding a dielectric layer. By inserting one or more buffer layers around the dielectric layer of the device, the resistive ratio of the device is highly enhanced. For example, tests using this unique stack structure have revealed a resistance ratio of approximately 1000× over conventional electrode-dielectric-electrode stack structures found in resistive memory devices. This improvement in the resistance ratio of the resistive memory device is believed to be from the improved interface coherence, and thus smoother topography, between the buffer layer(s) and the dielectric layer.
摘要:
A non-volatile memory and a method of fabricating the same are described. First, a substrate is provided. Then, a plurality of stack structures is formed on the substrate. Each stack structure comprises, from bottom to top, a bottom dielectric layer, a charge trapping layer, a top dielectric layer, a control gate and a cap layer. Next, a plurality of spacers is formed on the sidewalls of the stack structures. Thereafter, a gate dielectric layer is formed over the substrate. A word line is formed between two neighboring stack structures. After that, the cap layers in the stack structures are removed. A source and a drain are formed in the substrate beside the stack structures adjacent to the sides of each word line.
摘要:
A non-volatile memory cell is described, including a semiconductor body of a first conductivity type, a trapping layer, a gate, and a first to a third doped regions of a second conductivity type. The semiconductor body has a trench thereon, the trapping layer is disposed on the surface of the trench, and the gate is disposed in the trench. The first doped region is located in the semiconductor body under the trench, and the second and third doped regions are located in the semiconductor body at two sides of the trench. A non-volatile memory array based on the memory cell, a method for fabricating the memory cell and a method for fabricating the non-volatile memory array are also described.
摘要:
The single-poly EEPROM includes a first PMOS transistor serially connected to a second PMOS transistor. The first and second PMOS transistors are both formed on an N-well of a P type substrate. The first PMOS transistor includes a floating gate, a first P+ doped drain region and a first P+ doped source region. The second PMOS transistor includes a gate and a second P+ doped source region. The first P+ doped drain region of the first PMOS transistor serves as a drain of the second PMOS transistor. A diode is located in the P type substrate including a P-well and a N+ doped region. The floating gate overlaps with the N-well and extends to the N+ doped region. The overlapped region of the P-well and the N+ doped region junction beneath the floating gate serves as an avalanche injection point in the vicinity of the first PMOS transistor.
摘要:
A method for making metal-insulator-metal (MIM) capacitors having insulators with high-dielectric-constant and sandwiched between wide-band-gap insulators resulting in low leakage currents and high capacitance per unit area is achieved. The high-k layer increases the capacitance per unit area for next generation mixed-signal devices while the wide-band-gap insulators reduce leakage currents. In a second embodiment, a multilayer of different high-k materials is formed between the wide-band-gap insulators to substantially increase the capacitance per unit area. The layer materials and thicknesses are optimized to reduce the nonlinear capacitance dependence on voltage.
摘要:
An electrically programmable non-volatile memory cell is provided. A semiconductor substrate is prepared. A pair of spaced apart source/drain (S/D) regions is defined on the semiconductor substrate. The spaced apart S/D regions define a channel region in between. A first dielectric layer such as silicon dioxide is disposed on the S/D regions. An assistant gate is stacked on the first dielectric layer. The assistant gate has a top surface and sidewalls. A second dielectric layer comprising a charge-trapping layer is uniformly disposed on the top surface and sidewalls of the assistant gate and is also disposed on the channel region. The second dielectric layer provides a recessed trough between the S/D regions. A conductive gate material fills the recessed trough for controlling said channel region.
摘要:
A first metal plug is formed in the first layer of dielectric. A freestanding second metal plug is created that aligns with and makes contact with the first metal plug, extending the first metal plug. The second metal plug is surrounded by an opening that has been created in layers of etch stop and dielectric. A layer of capacitor dielectric is deposited over the exposed surfaces of the first and second metal plugs and the inside surfaces of the opening that surrounds the second plug. A layer of metal is created over the capacitor dielectric inside the opening in the layers of etch stop and dielectric.