摘要:
A non-volatile memory includes a substrate, a plurality of data storage elements positioned on the substrate, a plurality of control gates positioned above the data storage elements, an insulating layer positioned on surfaces and sidewalls of the control gates, and a bit-line positioned on the insulating layer to cross the control gates.
摘要:
A memory device including a plurality of word lines, a plurality of bit lines, at least four control lines and a plurality of memory cells is provided. The bit lines are disposed in a perpendicular direction of the word lines. Each memory cell is disposed at an intersection of one of the word lines and one of the bit lines, and every four sequential memory cells having a common word line are connected to the four control lines respectively. In addition, in each of the memory cells, the control line thereof is disposed between the bit line thereof and the word line thereof, and is parallel to the bit line thereof, wherein each of the memory cell is provided as a bit.
摘要:
A memory device including a plurality of word lines, a plurality of bit lines, at least four control lines and a plurality of memory cells is provided. The bit lines are disposed in a perpendicular direction of the word lines. Each memory cell is disposed at an intersection of one of the word lines and one of the bit lines, and every four sequential memory cells having a common word line are connected to the four control lines respectively. In addition, in each of the memory cells, the control line thereof is disposed between the bit line thereof and the word line thereof, and is parallel to the bit line thereof, wherein each of the memory cell is provided as a bit.
摘要:
A fabrication method for an integrated device having a capacitor in an interconnect system is described. At least a first exposed metal line and a second metal line are provided in an insulating layer. A stack layer is deposited and patterned to form a film stack structure over the second metal line. An inter-metal dielectric layer is formed over the film stack structure, the first metal line and the insulating layer. At least a first dual damascene interconnect and a second dual damascene interconnect are formed over and in contact with the first metal line and the film stack structure, respectively.
摘要:
A method is used to fabricate an electrically erasable programmable read only memory. First, a substrate is provided. Then, a doped polysilicon pillar is formed on the substrate. Furthermore, a source is formed in the substrate beneath the doped polysilicon pillar. Finally, the other structures of the memory are completed in sequence.
摘要:
A process is disclosed for fabricating buried diffusion junction that can be combined with the shallow-trench isolation for the memory device cell unit transistor wherein both the junction and the isolation can be formed in the same layout. The buried diffusion is free from being inadvertently cut apart to cause open-circuiting. A bird's beak oxide layer is formed protecting the buried diffusion junction region from undesirable etching, thereby preventing from damaging consumption by etching. The buried diffusion junctions formed may serve as the source/drain region for the transistor.
摘要:
The single-poly EEPROM includes a first PMOS transistor serially connected to a second PMOS transistor. The first and second PMOS transistors are both formed on an N-well of a P type substrate. The first PMOS transistor includes a floating gate, a first P+ doped drain region and a first P+ doped source region. The second PMOS transistor includes a gate and a second P+ doped source region. The first P+ doped drain region of the first PMOS transistor serves as a drain of the second PMOS transistor. A diode is located in the P type substrate including a P-well and a N+ doped region. The floating gate overlaps with the N-well and extends to the N+ doped region. The overlapped region of the P-well and the N+ doped region junction beneath the floating gate serves as an avalanche injection point in the vicinity of the first PMOS transistor.
摘要:
An electrically programmable non-volatile memory cell is provided. A semiconductor substrate is prepared. A pair of spaced apart source/drain (S/D) regions is defined on the semiconductor substrate. The spaced apart S/D regions define a channel region in between. A first dielectric layer such as silicon dioxide is disposed on the S/D regions. An assistant gate is stacked on the first dielectric layer. The assistant gate has a top surface and sidewalls. A second dielectric layer comprising a charge-trapping layer is uniformly disposed on the top surface and sidewalls of the assistant gate and is also disposed on the channel region. The second dielectric layer provides a recessed trough between the S/D regions. A conductive gate material fills the recessed trough for controlling said channel region.
摘要:
A method of manufacturing a dual cylinder-shaped capacitor. The method includes the steps of forming a cylindrical oxide layer above a conductive layer, and then forming silicon nitride spacers and first oxide spacers on the sidewalls of the cylindrical oxide layer. Next, using the silicon nitride spacers, the first oxide spacers and the cylindrical oxide layer as a hard mask, the conductive layer is etched to form a separate lower electrode. Thereafter, the oxide layer is removed so that only the silicon nitride spacers remain. Subsequently, second oxide spacers and third oxide spacers are formed on the sidewalls of the silicon nitride spacers. Finally, the silicon nitride spacers are removed, and then the conductive layer is again etched to form the dual cylinder-shaped lower electrode.
摘要:
A process is provided for fabricating a nonvolatile memory cell. According to the process, source and drain regions are formed on a first conductivity-type semiconductor substrate; and insulating layer is formed on the source and drain regions; a floating gate is formed on the insulating layer; a dielectric composite is formed on the floating gate; and a control gate is formed on the dielectric composite. The dielectric composite includes a bottom layer of silicon dioxide formed on the floating gate; a layer of silicon nitride formed on the bottom silicon dioxide layer; and a top layer of silicon dioxide formed on the nitride layer such that the silicon nitride layer of the composite is thinner than the top or the bottom silicon dioxide layer.