Abstract:
A semiconductor structure includes a stacked metal oxide layer on a substrate, wherein the stacked metal oxide layer includes a first metal oxide layer, a second metal oxide layer, and a third metal oxide layer from top to bottom, and the energy bandgap of the second metal oxide layer is lower than the energy bandgap of the first metal oxide layer and that of the third metal oxide layer. The semiconductor structure includes a metal oxide layer on a substrate, wherein the energy bandgap of the metal oxide layer changes along a direction perpendicular to the surface of the substrate. The present invention also provides a semiconductor process forming said semiconductor structure.
Abstract:
A method of forming a semiconductor device is disclosed. A substrate having a dielectric layer thereon is provided. The dielectric layer has a gate trench therein and a gate dielectric layer is formed on a bottom of the gate trench. A work function metal layer and a top barrier layer are sequentially formed in the gate trench. A treatment is performed to the top barrier layer so as to form a silicon-containing top barrier layer. A low-resistivity metal layer is formed in the gate trench.
Abstract:
A manufacturing method of MOS transistor, the MOS transistor includes a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface and a curved top surface, both the curved top surface and the curved bottom surface bend toward the substrate and the curved top surface is sunken from two sides thereof, two ends of the silicide layer point tips raised up over the source/drain region and the silicide layer in the middle is thicker than the silicide layer in the peripheral, thereby forming a crescent structure. The present invention further provides a manufacturing method of the MOS transistor.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having at least one metal gate thereon, a source/drain region adjacent to two sides of the at least one metal gate, and an interlayer dielectric (ILD) layer around the at least one metal gate; forming a plurality of contact holes in the ILD layer to expose the source/drain region; forming a first metal layer in the contact holes; performing a first thermal treatment process; and performing a second thermal treatment process.
Abstract:
A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
Abstract:
A non-planar semiconductor structure comprises a substrate, at least one fin structure on the substrate, a gate covering parts of the fin structures and part of the substrate such that the fin structure is divided into a channel region stacking with the gate and source/drain region at both sides of the gate, a plurality of epitaxial structures covering on the source/drain region of the fin structures, a recess is provided between the channel region of the fin structure and the epitaxial structure, and a spacer formed on the sidewalls of the gate and the epitaxial structures, wherein the portion of the spacer filling in the recesses is flush with the top surface of the epitaxial structures.
Abstract:
A semiconductor device includes a substrate having a medium-voltage (MV) region and an one time programmable (OTP) capacitor region, a MV device on the MV region, and an OTP capacitor on the OTP capacitor region. Preferably, the MV device includes a first gate dielectric layer on the substrate, a first gate electrode on the first gate dielectric layer, and a shallow trench isolation (STI) adjacent to two sides of the first gate electrode. The OTP capacitor includes a fin-shaped structure on the substrate, a doped region in the fin-shaped structure, a second gate dielectric layer on the doped region, and a second gate electrode on the second gate dielectric layer.
Abstract:
A method for fabricating a semiconductor device includes the steps of first providing a substrate having a non-metal-oxide semiconductor capacitor (non-MOSCAP) region and a MOSCAP region, forming a fin-shaped structure on the MOSCAP region, forming a shallow trench isolation (STI) around the substrate and the fin-shaped structure, performing a first etching process to remove part of the STI on the MOSCAP region, and then performing a second etching process to remove part of the STI on the non-MOSCAP region and the MOSCAP region.
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, a barrier layer on the buffer layer, a gate electrode on the barrier layer, a field plate adjacent to two sides of the gate electrode, and a first passivation layer adjacent to two sides of the gate electrode. Preferably, a sidewall of the field plate includes a first curve.
Abstract:
A method for fabricating a semiconductor device includes the steps of forming a metal-oxide semiconductor (MOS) transistor on a substrate, forming an interlayer dielectric (ILD) layer on the MOS transistor, forming a ferroelectric field effect transistor (FeFET) on the ILD layer, and forming a ferroelectric random access memory (FeRAM) on the ILD layer. The formation of the FeFET further includes first forming a semiconductor layer on the ILD layer, forming a gate structure on the semiconductor layer, and then forming a source/drain region adjacent to the gate structure.