摘要:
The present invention relates to ceramic cutting tools, such as, a aluminum oxide with zirconium oxide ceramic cutting tool with diffusion bonding enhanced layer and CVD coatings, particularly useful for machining modern metal materials. The method comprises a chemical reaction with a mixture including nitrogen and aluminum chloride introduced to form a diffusion bonding enhanced layer between the ceramic substrate and the CVD coatings. Thus formed diffusion bonding is highly adherent to the aluminum oxide with zirconium oxide ceramic substrate and significantly enhances the CVD coating properties, and thus improving the machining performance in terms of the tool life of zirconium-based aluminum oxide with zirconium oxide ceramic cutting tools.
摘要:
A composite article includes a first composite material and a second composite material. The first composite material and the second composite material individually comprise hard particles in a binder. A concentration of ruthenium in the binder of the first composite material is different from a concentration of ruthenium in the binder of the second composite material.
摘要:
Cutting tools and cutting inserts having a wear resistant coating on a substrate comprising a metal carbide particle and a binder. For certain applications, a cutting insert having a wear resistant coating comprising hafnium carbon nitride and a binder comprising ruthenium may provide a greater service life. The wear resistant coating comprising hafnium carbon nitride may have a thickness of from 1 to 10 microns. In another embodiment, the cutting tool comprises a cemented carbide substrate with a binder comprising at least one of iron, nickel and cobalt.
摘要:
The present invention relates to the PVD coated tungsten carbide (WC) based cemented cutting inserts with ruthenium (Ru) as a key chemical element, or a key feature, in the cobalt (Co)-based binder phase, particularly useful for machining today's mold & die materials. In the Ru—Co mixed binder phase in the tungsten carbide substrate, the ratio of Ru/Co is at least 3%, by weight. The Ru-featured carbide cutting insert provided in this invention is PVD coated with one or more layers by a modern PVD coating technology. The development of the PVD coated Ru-featured carbide cutting inserts provided in this invention is based on a discovery that the unique combination of PVD coating techniques and Ru-featured carbide cutting inserts demonstrates superior machining performance in today's mold & die machining applications.
摘要:
A cutting tool or drill insert with chip control geometry comprising a body including a portion securable in a holder and a forward portion. The forward portion defining at least one cutting edge extending from the central axis of the body to an edge of the body. A chip groove is defined by the surface of the body adjacent to the cutting edge. The chip groove incorporates chip control geometry as spaced apart elongate projections.
摘要:
The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.
摘要:
A method of forming a composite article by injecting at least two composite materials comprising metal carbides into a mold to form a green compact is disclosed. The composite materials may be metal powders comprising a binder metal, a hard particle. The composite material may further comprise a plastic binder. The two different composite materials are injected into the mold to form the green compact. Additionally, the composite materials may be injected through a die before entering the mold. In a specific embodiment, the die forms at least one internal channel within the green compact.
摘要:
The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.
摘要:
The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.