摘要:
An over-current input conditioning limiter is disclosed for remote equipment. The over-current input conditioning limiter includes a current sensing apparatus, a semiconductor switch, and a programmable controller for controlling the peak current drawn from a pair of supply lines. The over-current input conditioning limiter is particularly useful for overcoming voltage collapse and over-current shutdowns of network power supplies feeding remote apparatus known in the art.
摘要:
Various exemplary embodiments relate to a method, policy and charging rules node (PCRN) and machine-readable storage medium for creating policy and control charging rules with minimal rule instantiation latency. Embodiments may include one or more of the following: receiving at a PCRN from an application node a first service request message, determining whether the PCRN should wait for a mate message for the service flow, if the PCRN should not wait for a mate message, immediately generating at least one PCC rule, and immediately pushing the first PCC rule to at least one gateway. Various exemplary embodiments may further include using subscriber preferences and/or a record of previous decisions to determine whether the PCRN should wait for a mage message. In various embodiments, the PCRN may disable a timer when it determines it should not wait for a mate message.
摘要:
Various exemplary embodiments relate to a stiffener for use with and integrated circuit (IC). The stiffener can be attached to the IC, and can utilize a planar portion and one or more beam portions that project from the planar portion at a non-zero angle. The stiffener can alternatively include a frame formed of beam portions that are adjacent the sides of the IC. The stiffener can provide added stiffness to the IC package to resist warping of the IC during soldering.
摘要:
The invention is directed to providing a method and system for monitoring and managing from a network management entity, timing-over-packet synchronization performance in a packet switching network having multiple network nodes. The network management entity determines a physical topology and a synchronization topology of the network and monitors synchronization performance by collecting virtual path information.
摘要:
The invention is directed to a method and system for providing centralized automated synchronization clock reconfiguration in packet switched telecommunications networks having network nodes that do not implement Synchronization Status Messaging (SSM) internally. This is especially useful when integrating TDM networks with packet switching network elements having T1 and E1 interfaces.
摘要:
Various exemplary embodiments relate to a provider edge node and a related method. The provider edge node may include a receiver that receives at least one packet transmitted over a TDM pseudowire using a structure-agnostic transmission mechanism. The provider edge node may also include a physical interface configured to output frames to a corresponding customer edge (CE) device and a machine-readable storage medium that stores a TDM framing type corresponding to the physical interface. Finally, the provider edge node may include a circuit emulation engine that, during periods in which a network error has occurred, transmits a plurality of frames to the CE device over the physical interface. A TDM data payload of each frame may include an idle pattern, while a group of framing bits of the plurality of frames may define a framing pattern corresponding to the TDM framing type stored for the physical interface.
摘要:
The invention is directed to an apparatus and method for providing automatic binding of Virtual Private Routed Network (VPRN) over MPLS SDP RSVP LSP tunnels in a provider-managed IP/MPLS network.
摘要:
A method and apparatus for communicating data packets according to classes of service is described. One or more service interfaces are coupled to a plurality of transport interfaces. The service interfaces carry packets having multiple classes of service, while each of the plurality of transport interfaces carries packets of a single class of service. A differentiated services codepoint profile is associated with each service interface and maps a differentiated services codepoint value of a data packet to a class of service and a drop precedence. The data packet is assigned to a transport interface based on its class of service and its drop precedence. Other factors, such as the destination of the data packet may be considered when assigning the data packet to a transport interface. Data packets from different transport interfaces are preferably enqueued in different queues of a destination service interface.
摘要:
A method and apparatus for communicating and utilizing control plane congestion information in a communication network that utilizes a source routed signaling protocol is presented. When control plane congestion is detected at a network element within the communication network, a congestion notification message is generated corresponding to the detected control plane congestion. The congestion notification is then provided to at least one additional network element within the communications network. The at least one additional network element can then utilize this knowledge of the congestion within the network to perform various network functions, including the routing a connection set-up message.
摘要:
A method and apparatus for optimizing redundant link usage allows a portion of the wasted bandwidth in a redundant link system to be utilized for additional data traffic without compromising the ability of the system to respond to and correct for a failure of a link. In one embodiment, one of two independent, individually addressable links is selected as a nominal communication path, and the other as a standby communication path. The path independent traffic is sent via the nominal communication path, while the path dependent data is sent via the nominal communication path or the standby path, in accordance with the dependence of the traffic. In another embodiment, critical time sensitive traffic is sent via a nominal and standby time sensitive paths, while normal traffic is sent via nominal normal path, and non-critical traffic is sent via a standby normal path.