Abstract:
3-dimensional display device includes a display panel for displaying image; a backlight for supplying light to the display panel; and a switching liquid crystal panel between the display panel and the backlight to display 2-dimensional image and 3-dimensional image by blocking and transmitting the light from the backlight in part area, the switching liquid crystal panel being divided a plurality of regions to display respectively the 2-dimensional image and the 3-dimensional image in each regions.
Abstract:
A liquid crystal display module includes an observation region to allow a visual inspection be performed after bonding of the substrates for inspecting the sealant that may be otherwise blocked by the common voltage line. An embodiment of a liquid crystal display device includes a first electrode on a first substrate, a second electrode and a third electrode on a second substrate, the second electrode electrically contacting the first electrode at a first portion and the third electrode at a second portion, and including a transparent conductive material, a sealant attaching the first and second substrates together in a sealant region, the sealant between the first and second electrodes and the sealant including a plurality of conductive balls for electrically connecting the first and second electrodes, and a liquid crystal layer between the attached first and second substrates and within the sealant.
Abstract:
A method for fabricating a liquid crystal display (LCD) device includes providing a first substrate including a pixel portion and a circuit portion, the circuit portion having first and second regions; forming an active pattern and a first gate insulation film at the pixel portion and the circuit portion and forming a storage electrode on a portion of the active pattern of the pixel portion; forming a second gate insulation film on the first substrate; forming a gate electrode at the first region and forming p+ source and drain regions at portions of the active pattern of the first region; forming a gate electrode at the pixel portion and the second region, and forming a common line at the pixel portion; forming n+ source and drain regions at the pixel portion and at a portion of the active pattern of the second region; and joining the first and second substrates.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor including a gate electrode, an active layer, an ohmic contact layer, a buffer metallic layer, a source electrode and a drain electrode, the thin film transistor being electrically connected to the gate line and the data line and a pixel electrode in the pixel region and connected to the thin film transistor, wherein the active layer is disposed over and within the gate electrode.
Abstract:
An apparatus for driving a liquid crystal display device comprises a display area which includes a plurality of liquid crystal cells in portions defined by a plurality of gate and data lines; a gate driver which supplies overlapped gate pulses to the adjacent gate lines; a data driver which supplies a data voltage to the data line in synchronization with the gate pulse; and a timing controller which controls an overlapped section of the gate pulses supplied to the adjacent gate lines.
Abstract:
A liquid crystal display device includes first and second substrates facing each other with a liquid crystal layer therebetween, a first data line, a second data line, a gate line, a pixel electrode and a reset electrode on the first substrate, the first data line crossing the gate line to define a pixel region, and a common electrode on the second substrate, during a first period of a frame, the pixel electrode and the reset electrode generating a horizontal electric field with respect to the substrates, and during a second period of the frame the common electrode and the pixel and reset electrodes generating a vertical electric field with respect to the substrates.
Abstract:
An organic light-emitting diode display device includes a data line, a first and second gate lines crossing the data line, an emission line crossing the data line, an organic light-emitting diode device having an anode electrode and a cathode electrode, a high-level potential driving voltage source for supplying a high-level potential driving voltage to the anode electrode, a first switch element for connecting a cathode electrode of the organic light-emitting diode device to a first node, a second switch element for connecting the data line to a second node, a third switch element for connecting the second node to a ground voltage source, a driving element for adjusting a current flowing between the cathode electrode of the organic light-emitting diode device and the first node in accordance with a voltage of the first node, a first capacitor connected between the second gate line and the first node, and a second capacitor connected between the first node and the second node.
Abstract:
A shift register is disclosed, which can prevent a multi-output caused by a coupling phenomenon, the shift register comprising at least two clock transmission lines which transmit at least two clock pulses provided with the phase difference; and a plurality of stages which are supplied with the clock pulses from the clock transmission lines, and output output-signals in sequence, wherein each of the stages comprises a pull-up switching unit which is supplied with the first clock pulse, and outputs the first clock pulse as the output-signal according to a signal state of an enable node; and a noise eliminating unit which responds to the second clock pulse of which phase is prior to that of the first clock pulse supplied to the pull-up switching unit, and supplies a start pulse externally provided or the output-signal provided from the preceding stage to the enable node.
Abstract:
A liquid crystal display device includes a liquid crystal display panel, a plurality of lamps for irradiating light onto the liquid crystal display panel, a cover bottom that houses the plurality of lamps, an inverter printed circuit board having a first surface and a second surface opposite to the first surface with an insulation base layer between the first and second surfaces, wherein the second surface is adjacent to the cover bottom, a transformer on the first surface of the inverter printed circuit board, and a metal shielding pattern on the second surface of the inverter printed circuit board directly between the transformer and the cover bottom.
Abstract:
Provided is an array substrate, an LCD device having the same, and a manufacturing method thereof using IPP. The method includes forming a gate line and a gate electrode on a substrate using a first mold, forming a gate insulating layer over the substrate and the gate line, forming a first plane layer on first portions of the gate insulating layer, forming a semiconductor layer on second portions of the gate insulating layer using a second mold, forming a second plane layer over the first plane layer, forming a data line on the second plane layer and a source electrode and a drain electrode on the semiconductor layer using a third mold, forming a passivation layer having a contact hole using a fourth mold, and forming a pixel electrode on the passivation layer using a fifth mold, the pixel electrode electrically connected to the drain electrode via the contact hole.