Abstract:
(1) A packaged body of lithographic printing plate precursors, wherein an image-recording layer or a protective layer of the outermost surface layer contains an inorganic layered compound. (2) A lithographic printing plate precursor having a protective layer containing an inorganic layered compound, and an image-recording layer containing a binder polymer. (3) A lithographic printing plate precursor having a protective layer containing an inorganic layered compound, and an image-recording layer containing an infrared absorber and an iodonium compound.
Abstract:
A lithographic printing plate precursor includes, in the following order: a support; an intermediate layer; and an image-forming layer, and the intermediate layer contains a polymer (A) comprising a repeating unit (a1) represented by the formula (I) as defined herein.
Abstract:
A plate making method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor including a support and an image-forming layer and containing (A) a compound generating an acid with light or heat, (B) an aromatic hydrocarbon compound or heterocyclic compound substituted with a functional group containing a nitrogen atom and (C) an aromatic aldehyde protected with an acid-decomposable group; and removing an unexposed area of the image-forming layer of the lithographic printing plate precursor by supplying at least one of dampening water and ink on a cylinder of a printing machine.
Abstract:
A lithographic printing plate precursor includes: a support; and an image-recording layer containing (A) an infrared absorbing agent, (B) a radical polymerization initiator, (C) a polymerizable compound and (D) an epoxy compound having a molecular weight of 1,000 or less.
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. Also disclosed are a negative-working lithographic printing plate precursor that can be developed by a water-soluble resin-containing aqueous solution and a method of lithographic printing that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits an excellent fine line reproducibility in nonimage areas even when printing is performed using ultraviolet-curing ink (UV ink). Also provided is a negative-working lithographic printing plate precursor that exhibits an excellent combination of fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a hydrophilic support and has thereon a photopolymerizable layer that contains a polymer compound that has the urea bond in the side chain position and a hydrophilic group. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
A curable composition in which polymerization inhibition due to oxygen is suppressed and which may be cured with high sensitivity by exposure to laser light or the like is provided. The curable composition includes: a polymerizable compound having an ethylenically unsaturated bond; a binder; a radical polymerization initiator; and at least one specific amine compound. Also provided is an image forming material and a negative-working planographic printing plate precursor including the curable composition.
Abstract:
A planographic printing plate precursor having an intermediate layer containing a copolymer containing structural units represented by Formulae (1), (2) and (3) below, and a image forming layer, in this order on a support, wherein R1, R2 and R3 each represent a hydrogen atom, a substituent having from 1 to 30 carbon atoms, or a halogen atom, L1 represents a single bond or a (n+1)-valent connecting group, n represents an integer of from 0 to 10, L2 represents a single bond or a (m+1)-valent connecting group, X represents a carboxylate ion, M represents a counter cation necessary for neutralization of charge, m represents an integer of from 1 to 10, and Y represents a substituent having from 0 to 30 carbon atoms, provided that Y does not represent a carboxy group and does not represent the same constituent as (XM).
Abstract:
Disclosed is a positive working light sensitive planographic printing plate material comprising an aluminum support and provided thereon, a lower layer and an upper layer in that order, at least one of the upper and lower layers containing a fluoroalkyl group-containing acryl resin, wherein the upper layer contains an alkali soluble resin and a light-to-heat conversion material, and the lower layer contains an alkali soluble resin and an acid decomposable compound represented by the following formula (1),
Abstract:
A lithographic printing plate precursor includes: a support; and a photosensitive layer containing a binder polymer containing a positively charged nitrogen atom in at least one of a main chain and a side chain of the binder polymer, a compound containing an ethylenically unsubstituted bond; and a radical polymerization initiator.
Abstract:
A lithographic printing plate precursor includes: a support having a surface, a contact angle of water droplet in air on which is 70° or more; and a photosensitive layer, wherein the support has, on a surface of the support, a compound having a functional group X, the functional group X is a functional group capable of forming a chemical bond with a compound having a functional group Y which can interact with the functional group X, when the functional group X is brought into contact with the compound having a functional group Y, to adsorb the compound having a functional group Y on the surface of the support so as to decrease the contact angle of water droplet in air on the surface of the support to 30° or less.