Abstract:
The previously presented teaching of the invention describes a method for the evaluation of sensor signals with the purpose of producing plausible and physiologically satisfying switching impulses for interrupting or for opening the air supply in ventilation systems, particularly for the ventilation of passenger cabins in motor vehicles, depending on the pollutant content of the ambient air established by one or more sensors.
Abstract:
A method and a system for analyzing gas samples employ at least two semiconductor sensor sets, used alternately. The sensor output signals are time-differentiated. As a result of these features, the time required for analysis can be reduced considerably, especially with an uninterrupted sequence of analyses to be performed in succession.
Abstract:
In order to increase the reliability of detection of gaseous contamination in containers, gas (G) from the container is subject to several different methods of analysis (54a to 54d), each of which emits differing output signal courses (I.sub.1 to I.sub.4), depending on the contaminants and their concentration. A vector of the state vector type (P.sub.GAS) is formed with the output signals (I.sub.1 to I.sub.4) as a state variable and checked to see whether it defines a permissible or an unacceptable state of contamination (56). On the basis of this examination the decision is taken whether a container is acceptably or unacceptably contamined.
Abstract:
A process for determination of one component of very low concentration in a test gas, which is guided in a supply line for concentration of the component across a sample collector, whose amassed quantity of samples is relinquished to a detection sensor. The arrangement makes available a measurement signal even during the collection of the sample. It also makes even the individual components of a multicomponent test gas detectable and a component-specific cross sensitivity of the detection sensor controllable. For this, the following process steps are provided: the test gas is first guided across the detection sensor 3 and then across the multistaged sample collector 7 having arrangements for separation of the several components; then after interruption of the supply of test gas, each individual stage 4, 5 and 6 separately relinquishes its separated component to the detection sensor 3.
Abstract:
A reactive gas detection system provides early warning of gas emissions that often occur in developing fire conditions in environments such as telephone system central offices where halogenated substances, for example polyvinyl chloride wire insulation and brominated fire retardant materials, are prevalent. Multiple microbalance detectors (122) comprising quartz crystal oscillators coated with a layer of zinc or zinc compound are distributed about a premises and the rate of change of crystal oscillation frequency is cyclically monitored by a frequency counter (130) under control of a data processor (112). The detectors are specifically reactive to the halogen acid gases emitted during pyrolysis of the noted substances and exhibit a significant differential frequency change in the presence one or more of these gases well in advance of the outbreak of flame, smoke, or other normally detectable combustion products. In order to maintain a high rate of system monitoring, the cycle period of each frequency measurement is greatly reduced during normal conditions, with resulting low measurement resolution. Upon the occurrence of a significant threshold frequency change in any of the detectors, subsequent frequency measurements are preferentially taken at the suspect detector over an extended cycle period with high resolution to confirm that the threshold is being exceeded. Continued excessive excursion of measured frequency change beyond a preset limit initiates the generation of an alarm signal.
Abstract:
An instrument for use on a marine vehicle including a sensor for determining the concentration of carbon monoxide (COC) present on the vehicle, an LED indicator for visually displaying the concentration, a microprocessor using a mathematical formula for calculating the health hazard to a person on the vehicle occasioned by the level of carbon monoxhemoglobin %COHb in the blood of that person resulting from breathing concentrations of carbon monoxide over a period of time. The instrument also determines for determining the health hazard condition in terms of long term exposure to a low COC level, moderate term exposure to a moderate COC level, and short term exposure to a high COC level, and in addition visually and audibly indicates the health hazard conditions. A method for the operating instrument, and a method of testing operativeness of the instrument are also provided.
Abstract:
A process of remote transmission of signals issued by at least one sensor over a transmission line, wherein the power necessary to supply the sensor is transmitted by that line in the form of an alternating current signal of approximately constant intensity, and wherein the line fulfills the triple function of supplying power to that sensor, of transmitting interrogation signals from a central station to that sensor and of transmitting data signals in response to that interrogation signal from the sensor to the central station. A device for incorporating this process is also disclosed.
Abstract:
A combustible gas detection system in which remotely located combustible gas sensors of the analog type are monitored by a central controller. The sensor analog data is converted to digital data and transmitted to the controller. The controller tests the integrity and validity of data received from the sensor, identifies the nature of any faults therein and vocally signals the cause of such faults. The controller computes the concentration of combustible gas at the sensor and automatically determines sensor calibration constants from received sensor data.
Abstract:
A portable, personal monitor measures and displays the concentrations of toxic substances to which an individual wearing the monitor has been exposed during a shift or other work period of the individual. The monitor is constructed in a compact, portable form, and it is enclosed within an outer case for wear by the individual during the work shift.
Abstract:
The instrument uses a semiconductor gas sensor element energized with a regulated voltage source and placed in the atmosphere to be tested to generate a signal representative of the concentration of natural gas in the air. A meter displays the signal to determine whether the area is hazardous, and a variable repetition rate blocking oscillator feeding a speaker is responsive to the signal for generating an audible tick rate useful in locating a leak. The instrument is light-weight, portable, easy to use and intended to comply with industry standards as an intrinsically safe instrument.