Abstract:
A nonvolatile memory controller may recover encoded data using the outer error correction code of the encoded data if it is determined that a correction capacity of the outer error correction code is not exceeded. Alternatively, the nonvolatile memory controller may recover the encoded data using the inner error correction code of the encoded data followed by the outer error correction code of the encoded data if it is determined that the correction capacity of the outer error correction code is exceeded. Additionally, if it is determined that the correction capacity of the outer error correction code is exceed after recovering the data using the inner error correction code, the nonvolatile memory storage module may perform a redundant array of independent disks (RAID) operation to recover the data.
Abstract:
A storage controller is configured to determine a reliability metric of a storage division of a solid-state storage medium based on one or more test read operations. The storage division may be retired based on the reliability metric and/or the age of the data on the storage division. A storage division comprising aged data may be marked for post-write reliability testing, which may comprise determining a post-write reliability metric in response to grooming and/or reprogramming the storage division. The storage controller may project the reliability metric of the storage division to the end of a predetermined data retention period. Portions of a storage divisions that exhibit poor reliability may be removed to improve the reliability of the storage division without taking the entire storage division out of service.
Abstract:
Dynamic graduated memory device protection in redundant array of independent memory (RAIM) systems that include a plurality of memory devices is provided. A first severity level of a first failing memory device in the plurality of memory devices is determined. The first failing memory device is associated with an identifier used to communicate a location of the first failing memory device to an error correction code (ECC). A second severity level of a second failing memory device in the plurality of memory devices is determined. It is determined that the second severity level is higher than the first severity level. The identifier from the first failing memory device is removed based on determining that the second severity level is higher than the first severity level. The identifier is applied to the second failing memory device based on determining that the second severity level is higher than the first severity level.
Abstract:
A method for data storage includes encoding data with an inter-device Error Correction Code (ECC), and sending the encoded data for storage on two or more storage devices. The data to be stored on each of the storage devices, and which has been encoded with the inter-device ECC, is encoded with an intra-device ECC, and the data encoded with the inter-device and intra-device ECCs is stored on the storage device. After storing the data, at least part of the stored data is retrieved and output by decoding the intra-device and inter-device ECCs, while using information related to one of the intra-device and inter-device ECCs in decoding the other of the intra-device and inter-device ECCs.
Abstract:
The subject technology includes adjusting an error correcting code rate in a solid-state drive. A first plurality of memory operations are performed on a flash memory device of the solid-state drive using a first code rate. During operation of the drive, a controller monitors an operating condition associated with one or more memory units of the flash memory device for a trigger event. On the trigger event, the first code rate is adjusted in accordance with the operating condition to produce a second code rate, and a second plurality of memory operations is performed on the flash memory device using the second code rate.
Abstract:
A method for data storage includes encoding data with an inter-device Error Correction Code (ECC), and sending the encoded data for storage on two or more storage devices. The data to be stored on each of the storage devices, and which has been encoded with the inter-device ECC, is encoded with an intra-device ECC, and the data encoded with the inter-device and intra-device ECCs is stored on the storage device. After storing the data, at least part of the stored data is retrieved and output by decoding the intra-device and inter-device ECCs, while using information related to one of the intra-device and inter-device ECCs in decoding the other of the intra-device and inter-device ECCs.
Abstract:
A structure of redundant array of independent disks (RAID) comprising multiple parity data is provided. A data protection field is attached after each basic data access unit of the parity data sequences and each subfields of the data protection field is defined according to different applications to protect the basic data access unit of the parity data or the data protection field of the payload data from errors incurring during data transmission.
Abstract:
Proposed are a storage system and its control method capable of dealing with the unique problems that arise when using a nonvolatile memory as the memory device while effectively preventing performance deterioration. This storage system is provided with a plurality of memory modules having one or more nonvolatile memory chips, and a controller for controlling the reading and writing of data from and in each memory module. The memory module decides the nonvolatile memory chip to become a copy destination of data stored in the nonvolatile memory when a failure occurs in the nonvolatile memory chip of a self memory module, and copies the data stored in the failed nonvolatile memory chip to the nonvolatile memory chip decided as the copy destination.
Abstract:
A system includes a receive module, a control module and a read module. The receive module receives a first block that includes first data, a first cyclic redundancy check (CRC) checksum, and a first error-correcting code (ECC) value. The first CRC checksum and the first ECC value include a logical block address (LBA). The control module generates a first derived CRC checksum based on the first data. The first derived CRC checksum does not include the LBA. The read module reads a second block from a parity disk. The second block includes parity data, a second CRC checksum, and a second ECC value. The second CRC checksum and the second ECC value include the LBA.
Abstract:
Data validation systems and methods are provided. Data is recorded in N data chunks on one or more storage mediums. A first validation chunk independently associated with said N data chunks comprises first validation information for verifying accuracy of data recorded in said N data chunks. The first validation chunk is associated with a first validation appendix comprising second validation information, wherein the first validation appendix is stored on a first storage medium independent of said one or more storage mediums.