Abstract:
A method and system for generating a medical image are disclosed. In at least one embodiment, the method involves providing a 3D dataset of a heart and generating a 2D representation of a curved surface of the 3D dataset by flattening out the curved surface of the heart. In at least one embodiment, the 2D representation corresponds to a surface area of the heart covering more than 180 degrees around a circumference of the heart.
Abstract:
An end-configuration of components to be moved or positioned is first obtained. This end-configuration determines the relative positioning and orientation of the components with respect to each other when in a final, desired configuration. A folding pattern is then obtained that is formed by interior vertices defining corresponding tessellation facets. The folding pattern can be induced to transition from a first folded configuration to a second folded configuration. When in the second folded configuration mounting facets, which are a subset of the tessellation facets, are arranged by the geometry of the folding pattern into positions and orientations with respect to each other that correspond to the end-configuration of the components. A foldable structure is then obtained that folds in accordance with the folding pattern, and the components are affixed to their respective mounting facets
Abstract:
Systems and methods are provided for accessing three dimensional representation of an anatomical surface and flattening the anatomical surface so as to produce a two dimensional representation of an anatomical surface. The two dimensional surface can be augmented with computed properties such as thickness, curvature, thickness and curvature, or user defined properties. The rendered two dimensional representation of an anatomical surface can be interacted by user so as to deriving quantitative measurements such as diameter, area, volume, and number of voxels.
Abstract:
A system and method for tree-model visualization for detecting an abnormality in an anatomical tree structure are provided. The method comprises: fitting a tree-model to an anatomical tree structure; converting branches of the tree-model into first two-dimensional branch images; and arranging the first two-dimensional branch images in a hierarchical order to form a second two-dimensional image.
Abstract:
Planar substrates are printed, cut, and folded to form three-dimensional cartons. Given graphics intended to appear on a carton surface or panel, printed graphics are laid-out and automatically positioned and manipulated using structural information associated with the cartons. Preferably a single computer-generated graphics file is created for use in printing the various panels and flaps. The graphics design can be overlaid on a computer image of the substrate, and graphic portions can be rotated, scaled, and aligned to properly fit printing areas on what will be panels and flaps (after cutting occurs). A computer generated three-dimensional image of the carton showing graphics printed on the panels and flaps can be manipulated by a graphics artist to confirm accuracy of the graphic file data before actual printing occurs.
Abstract:
A method of selectively removing folds in a medical image is provided. With this method, a medical image is deformed to straighten and flatten folds but not polyps, thus allowing polyps to be identified. In a first step, a 3-dimensional deformable model of the medical image is constructed. This model is set to have a high Young's modulus and a low Poisson's ratio. In a preferred embodiment, the model is a continuum surface model, preferably a quasistatic continuum finite element model. Once the model has been constructed, it is deformed such that folds are removed but polyps remain, allowing polyps to be identified.
Abstract:
A method of performing a colon exam includes obtaining at least two initial Computed Tomography (CT) datasets, extracting colon automatically from the CT datasets, synthesizing views of the extracted colon, displaying a plurality of obtained and synthesized views of the colon simultaneously, and synchronizing the views.
Abstract:
A system and method for creating a panoramic projection of a volumetric image of an object is disclosed. A virtual camera is placed in a center of a cubic space within the object. Images obtained from the camera are projected onto a single plane. A front image is mapped in a window at a center of the plane. A left, right, top and bottom image of the cubic space are mapped around the rectangular window such that the left, right, top and bottom images form a continuous image surrounding the rectangular window.
Abstract:
Certain embodiments of the present invention provide a system and method for displaying a set of data with a virtually dissected anatomical structure. In an embodiment, the anatomical structure is a colon and various attributes of the colonic lumen are assigned a color. In an embodiment, a virtual dissection of the colon is created by mapping a three-dimensional data set to a two dimensional data set. A plurality of display index values are computed which correspond to the three-dimensional data set. Various colors are assigned to specific display index values. The three-dimensional display index values are mapped to a two-dimensional set of display index values. As directed by a user, various color cues may be displayed with the virtually dissected lumen to provide color highlights to various aspects of the colon, such as highlighting shape, fluid, or fecal presence.
Abstract:
Techniques for integrating a product model into a user supplied image are presented herein. A method is disclosed that includes receiving an image of a user space from a user, receiving one or more definitions that describe the user space, retrieving, based on search terms provided by the user, one or more items available at a networked marketplace that fit within the definitions of the user space, and generating a composite image by overlaying an image of one of the items on the image of the user space. The method further scales the image of the item according to the definition of the user space and the physical dimensions of the item, and depicts virtual guidelines indicating a current scale of the image of the item.