Abstract:
A method and a system of using vibration signatures for pairing two devices. The method and the system include an apparatus that has a master side and a slave side. The slave side has at least one frictional structure. A first device is inserted into the master side. When a second device is inserted through the slave side, a pattern of vibration is generated. Vibration detecting devices on the first and second devices detect the pattern of vibration. A program of the first device validates a master vibration signature and configures the first device as a master device. A program of the second device validates a slave vibration signature and configures the second device as a slave device. The master device and the slave device are automatically paired.
Abstract:
In embodiments, apparatuses, methods and storage media are described that are associated with remote control of media devices. In embodiments, a remote control and a content player may be configured to facilitate a secured pairing process. The remote control may be configured to send non-secured signals (such as through an IR transmitter) as well as send and receive secured signals (such as via Bluetooth™ using an RF transceiver). The remote control, in response to being turned on or asked to pair, may send a pairing request to the player that includes an identifier for the remote control and which identifies the remote control as an eligible pairing device without requiring separate entry of a security code by a user. The remote control and player may then perform a pairing process without requiring additional action on the part of a user. Other embodiments may be described and/or claimed.
Abstract:
A wireless communication protocol may be utilized to authenticate a protected device. If the device is not properly authenticated, the device may be rendered inoperable. Thus, a limited range RF communication between the protected device and a base station may be utilized to automatically determine whether or not the device may be utilized. If the base station is not in-range, operation of the device may be defeated.
Abstract:
A handheld device includes a display having a viewable surface and operable to generate an image indicating a currently controlled remote device and a gesture database maintaining a plurality of remote command gestures. Each remote command gesture is defined by a motion of the device with respect to a first position of the handheld device. The device includes a gesture mapping database comprising a mapping of each of the remote command gestures to an associated command for controlling operation of the remote device and a motion detection module operable to detect motion of the handheld device within three dimensions and to identify components of the motion in relation to the viewable surface. The device includes a control module operable to track movement of the handheld device using the motion detection module, to compare the tracked movement against the remote command gestures to determine a matching gesture, and to identify the one of the commands corresponding to the matching gesture. The device also includes a wireless interface operable to transmit the identified command to a remote receiver for delivery to the remote device.
Abstract:
A handheld device includes a display having a viewable surface and operable to generate an image indicating a currently controlled remote device and a gesture database maintaining a plurality of remote command gestures. Each remote command gesture is defined by a motion of the device with respect to a first position of the handheld device. The device includes a gesture mapping database comprising a mapping of each of the remote command gestures to an associated command for controlling operation of the remote device and a motion detection module operable to detect motion of the handheld device within three dimensions and to identify components of the motion in relation to the viewable surface. The device includes a control module operable to track movement of the handheld device using the motion detection module, to compare the tracked movement against the remote command gestures to determine a matching gesture, and to identify the one of the commands corresponding to the matching gesture. The device also includes a wireless interface operable to transmit the identified command to a remote receiver for delivery to the remote device.
Abstract:
The present invention provides a handheld adjustable bed remote control that may comprise a circular group of input buttons. A first input button in the circular group of input buttons, upon activation, may control a head position of an adjustable bed. A second input button in the circular group of input buttons, upon activation, may control a foot position of the adjustable bed. A centrally located button may be positioned at an approximate center of the circular group of input buttons. The central button, upon activation, may cause the adjustable bed to return to a flat position.
Abstract:
A method for remote monitoring of a premises. A geographically remote client is operatively coupled to a security system server capable of authenticating a user of the remote client. The remote client is then operably coupled to a security gateway capable of managing the monitoring of the premises, activating a signal at the premises for notifying an occupant at the premises that remote monitoring is occurring, and transferring information between the security gateway and the remote client. The transfer of information between the security gateway and the remote client is controlled by the user of the remote client. The security gateway may be operably coupled to at least one camera at the premises and to at least one audio station at the premises.
Abstract:
A wireless communication protocol may be utilized to authenticate a protected device. If the device is not properly authenticated, the device may be rendered inoperable. Thus, a limited range RF communication between the protected device and a base station may be utilized to automatically determine whether or not the device may be utilized. If the base station is not in-range, operation of the device may be defeated.
Abstract:
A system includes a first device to select and transmit a first code by a transmitter to a remote device controlling a mechanism or access to a database or a computing device. The remote device implements a switching device based on the first code; the transmitter in the first device generates a first sequence of signals based on the first code; the switching device in the remote device processes the first sequence of signals and activates the mechanism based on the processing of the first sequence of signals. The first device may be a smartphone, a fob, an access card, or any other computing device.
Abstract:
Systems, methods, and computer-readable media for providing a third party access to interaction data of an article. An event detection system can be coupled to an article for a recipient. The event detection system can include a wireless communication interface and a sensor configured to detect at least one interaction event that occurs at the article. Interaction data related to the at least one interaction event can be generated that includes a user identifier of the recipient that is uniquely associated with an article identifier of the article. The interaction data can be transmitted through the wireless communication interface to an operating server for providing a third party access to the interaction data based on the inclusion of the user identifier and the article identifier with the interaction data.