Abstract:
Diode for providing X-rays. A diode for generating X-rays is adapted for connection to a source of high electrical energy with the diode having a first end from which the X-rays are emitted, a second end, and axis extending between the ends. The diode includes a ring cathode connected to the electron source and an intermediate anode spaced from the cathode with at least a portion of this anode being disposed between the ring cathode and the diode first end. The intermediate anode decelerates electrons to cause the generation of X-rays emitted from the diode first end. The diode also includes an intermediate cathode disposed radially outwardly of the intermediate anode and connected to this anode. The diode further includes an inverse anode spaced from the intermediate cathode and positioned radially outwardly of the intermediate cathode and between the intermediate cathode and between the intermediate cathode and the diode second end. The inverse anode also decelerates electrons to cause the generation of X-rays emitted from the diode first end generally radially outwardly of the X-rays resulting from operation of the intermediate anode. The inverse anode is connected to ground so that the diode forms a pair of anode-cathode gaps in series to divide the energy of the electrons and to cause more uniform emission of X-rays from the diode first end.
Abstract:
Omni-directional X-ray tube having a target which is at least partially surrounded by an annular window passed by the X-rays, the cathode and the electron optics and the targets being designed such that the radiation passing the window is sweeping a larger sector in the plane of the window. The cathode arrangement includes at least two electron sources with an associated electron optics. The formation of the electron optics and of the targets is such that for each electron optic a focal point is generated on the target and the radiation originating from the individual focal points are sweeping about adjacent subsectors which are approximately screened against each other to avoid an overlapping.
Abstract:
An X-ray tube has a cathode assembly for emitting an electron beam and an anode target facing this assembly in an evacuated envelope. The anode target defines a target surface that is slightly inclined to the electron beam axis and the direction in which it is inclined coincides with an X-ray irradiation direction. The cathode assembly comprises a flat cathode with a flat electron emission surface and a focussing electrode which focuses electrons emitted by the cathode. The cathode's electron emission surface is elongated and its long axis is coincident with the direction of X-ray irradiation. The focussing electrode possesses an axially symmetric opening with generally the same dimensions lengthways and crosswise. This gives an X-ray tube device in which the shape of the X-ray focal spot seen looking from the X-ray irradiation direction is substantially that of a circle or of a polygon, including a square, and it is possible to vary the size of the X-ray focal spot over a wide range while maintaining its long to short side ratio at 1.4 or less.
Abstract:
Radiation imaging apparatus especially suited for use in a computerized tomographic (CT) scanner employs an array of discrete X-ray sources, each being a cold cathode diode and an adjacent fixed array of closely packed radiation detectors to produce images of rapidly moving body organs such as the beating heart. A variety of alternative X-ray source embodiments are also disclosed.
Abstract:
An x-ray tube providing a flat, fan-shaped uniform x-ray beam.The tube includes inside a vacuum glass envelope, a cathode or cathodes, a fixed or cylindrical rotating anode, and an anti-divergence diaphragm. The anti-divergence diaphragm has an opening, through which passes the beam. The walls of the opening have the shape of a sector of the fan-shaped beam in one plane (z-z'), and are flat in a perpendicular plane. A plurality of x-ray absorbing blades are positioned in the opening parallel to the fan-shaped side dividing the opening and the beam passing therethrough, thereby minimizing overall divergence of the beam. A plurality of cathodes may be used in the rotating anode tube, each separately focusable to provide beams of different intensity, and alternately operable.