Abstract:
A driver circuit for delivering a generally constant voltage to a load is disclosed. The driver circuit includes a source of incoming AC power, a rectifier, and a constant voltage driver. The rectifier is connected to the source of incoming AC power and produces a DC voltage. The constant voltage driver receives the DC voltage from the rectifier. The constant voltage driver includes a selectively activated switching element for receiving the DC voltage, a controller, and an output line. The controller receives the DC voltage and is configured to send a drive signal to the switching element in order to activate the switching element. The output line provides the generally constant voltage to the load.
Abstract:
A PWM control unit is provided. A comparison unit compares an output voltage with a reference voltage to generate a first compared result, and controls a voltage of a first node. A constant current source is coupled to the first node. A storage module is coupled to the first node and receives a ground voltage. A first comparator compares the output voltage with the voltage of the first node to generate a turn-on signal. A second comparator compares the voltage of the first node with the input voltage to generate an output signal. A logic gate generates a turn-off signal according to the turn-on and output signals. When each of the turn-on and output signals is at a first level, a logic gate asserts the turn-off signal at a second level. The PWM generator combines the turn-on and turn-off signals to generate a PWM signal.
Abstract:
An adapter power supply of the invention comprises a switching element that performs switching of an input voltage obtained by rectifying an input AC voltage to deliver switched voltage to a primary winding of an isolating transformer, a diode that rectifies a voltage obtained across a secondary winding of the isolating transformer to obtain a DC output voltage, and a thermoelectric conversion element that performs thermoelectric conversion to variably set the DC output voltage corresponding to a temperature difference between a heated temperature of the switching element or the diode and an atmospheric temperature. The thermoelectric conversion element is disposed between a heat sink attached to the switching element or the diode and a package for containing a main body of the adapter power supply.
Abstract:
A power circuit includes: a rectifying circuit configured to rectify an AC voltage; a capacitor configured to integrate an output current of the rectifying circuit; a field effect transistor connected between the rectifying circuit and the capacitor; and a control circuit configured to supply a first gate voltage to a gate of the field effect transistor when a voltage of the capacitor is lower than a threshold value and supply a second gate voltage to the gate of the field effect transistor when the voltage of the capacitor is higher than the threshold value, wherein a resistance of the field effect transistor when the first gate voltage is supplied is higher than a resistance of the field effect transistor when the second gate voltage is supplied.
Abstract:
A switched mode assisted linear regulator includes a linear amplifier (LA) and a buck converter configured as a current source. In example embodiments, the buck converter circuit includes a power switch M1 with an M1 body diode (tub), and includes buck turn-off circuitry configured to avoid negative inductor current by controlled switching of the tub to the higher of VIN and a second voltage. For DC-coupled configurations, boost functionality is provided by an LA boost supply, and the tub is switched to the boost supply. For AC-coupled configurations, boost functionality can be provided without boosting the LA supply rail by constraining signal peak-to-peak amplitude to be less than the LA supply voltage (maintaining a DC-average voltage on the AC-coupling capacitor), and the tub is switched to the higher of VIN and VOUT. The buck turn-off circuitry can include zero crossing detection to control M1 tub switches.
Abstract:
An exemplary direct current (DC) voltage generating apparatus for generating stable DC voltages includes a voltage conversion circuit, a voltage control circuit, and a voltage regulating circuit. The voltage conversion circuit receives an alternating current (AC) voltage, and converts the AC voltage to a first DC voltage. The voltage control circuit receives the first DC voltage, and converts the first DC voltage to a second DC voltage and a control signal. The voltage regulating circuit receives the control signal, and regulates the second DC voltage to a stable second DC voltage at the voltage control circuit according to the control signal.
Abstract:
An electrical circuit for providing electrical power for use in powering electronic devices is described herein. The electrical circuit includes a primary power circuit and a secondary power circuit. The primary power circuit receives an alternating current (AC) input power signal from an electrical power source and generates an intermediate direct current (DC) power signal. The intermediate DC power signal is generated at a first voltage level that is less than a voltage level of the AC input power signal. The secondary power circuit receives the intermediate DC power signal from the primary power circuit and delivers an output DC power signal to an electronic device. The output DC power signal is delivered at an output voltage level that is less than the first voltage level of the intermediate DC power signal.
Abstract:
A voltage regulator, having a control element, having a current feedback circuit, having a negative voltage feedback circuit, having a component for switching between a first mode as a switching regulator and a second mode as a linear regulator and for generating a digital control signal for triggering the control element in the first mode as a switching regulator based on a sum variable, and for generating a linear control signal for triggering the control element in the second mode as a linear regulator based on the sum variable, whereby in the first mode as a switching regulator and in the second mode as a linear regulator, a first output of the current feedback circuit and a second output of the negative voltage feedback circuit are coupled to form the sum variable.
Abstract:
A switching shunt regulator circuit includes a current source having an input for receiving an input voltage and an output for providing a DC current, and a shunt voltage regulator coupled to the output of the current source. The current source is configured to provide DC current to a DC load and DC current to the shunt voltage regulator when the DC load is coupled to the output. The DC current to the shunt voltage regulator regulates a voltage at the output. The shunt voltage regulator has a current carrying capacity greater than the sum of the DC current to the DC load and the DC current to the shunt voltage regulator.
Abstract:
A voltage regulator circuit arranged to receive a voltage supply signal, and to output a regulated voltage signal is described. The voltage regulator circuit comprises at least one switched mode power supply component selectively configurable to perform regulation of the voltage supply signal, at least one linear voltage regulator component selectively configurable to perform regulation of the voltage supply signal, and at least one controller component. The at least one controller component is arranged to receive an indication of a voltage level of the voltage supply signal, and configure a bulk connection for at least one switching device of the at least one linear voltage regulator component such that current flow from an output of the voltage regulator circuit to an input of the voltage regulator circuit through the bulk of the at least one switching device of the at least one linear voltage regulator component is resisted, if the indicated voltage level of the voltage supply signal is less than the threshold voltage level.