Abstract:
For the measurement of a dimension of an object in a liquid, windows are provided in a vessel containing the liquid and the object, and parts of an optical measuring apparatus for the determination of the dimension of the object are arranged in the region of the window. This measuring arrangement can be fitted on to an existing installation without substantial expense. An open vessel, into which the object must be inserted, thus remains freely accessible. Since the window is constantly in contact with the liquid, no optical interruptions can occur which would falsify the measurement.
Abstract:
A method and apparatus for monitoring the average diameter of a plurality of glass fibers, comprising illuminating the fibers with electromagnetic radiation, sensing radiation scattered by the fibers and generating a signal responsive to the amount of radiation sensed as an indication of the average diameter of the fibers; such signal can be used for measurement and/or control of the fiber producing process.
Abstract:
A system for viewing a zone to detect the presence of an article carried therein on a conveyor. In one embodiment, the system includes a laser source which projects a line-beam of coherent light toward the zone, which beam is intersected, along a length thereof, by the planar field of view of a reflection detector whose view-plane contains the beam. In another embodiment, the system uses a laser source which projects a planar beam of coherent light which is intersected by the field of view of a reflection detector whose view-field has both length and breadth dimensions where it intersects the laser beam. In both embodiments, the region of intersection of the laser beam and the detector's field of view is spaced from the conveyor.
Abstract:
An array of photosensitive imaging sensors connected to a digital computer is utilized to measure selected dimensions of objects upon which the photosensitive array is focused. Two sets of information in the form of analog signals generated by the photosensitive array, both with and without an object in view, are converted to digital form and stored in a memory. The two sets of information contained in the memory are compared to thereby create digital signals indicative of the dimensions of the object. These digital signals are converted to dimensional form and displayed.
Abstract:
An electro-optical measuring system wherein a scanning laser or light beam is precisely translated in a direction parallel to itself at a constant rate to define a time-varying sensing field whose energy is picked up by a photoelectric detector that yields an output signal. An object whose dimension is to be measured is inserted in the field whereby the output signal of the detector takes the form of a pulse whose leading edge is developed by the traversal of the beam across one boundary of the object, thereby blocking passage of the energy to the detector, and whose trailing edge is developed by the traversal of the beam across the opposite boundary of the object to restore the energy pick-up. The width or time duration of the pulse is an exact index to the distance between these boundaries, the time duration being converted into a measurement reading. Scanning of the beam is effected by combining two or more optical scanner means whose individual non-linearities are of such magnitude and form that in combination these non-linearities are effectively cancelled out and a final scan is achieved that is extremely linear, whereby measurements of exceptional accuracy are obtained.
Abstract:
Computerized electro-optical system gages two orthogonal dimensions of a moving hot bar at various peripheral positions. Dual back-light electronic camera heads mounted 90.degree. apart on a scanner generate high-speed bar shadow pulses which represent the bar dimensions. Bar pulses are processed by way of individual camera electronics and a digital computer. CRT and printing terminals, interacting with the computer, indicate and/or record each cold-size bar diameter measurement, a plot of bar profile deviation from aim gage overlaid on full- and half-commercial tolerance references with a data header, and a gaging system histogram.Each camera head electronics includes camera AGC circuit, a digital type one-axis bidirectional linear sweep, bar pulse edge-detection with an autocorrelator to remove noise and enhance the bar pulse, and a digital accumulator of digital bar size signals and digital bar position-in-field-of-view signals. The digital computer assimilates each bar size and bar position digital signal along with scanner position, bar temperature and other data signals. The computer is programmed to: (a) compensate each bar size signal for field-of-view errors and other optical and electronic nonlinearities, bar temperature and other sources of error; (b) calibrate the gage off-line and automatically recalibrate the gage on-line to correct for drift and slope errors; (c) automatically drive the scanner and implement incremental digital storage of corrected bar size signals for bar profile plotting; (d) perform gaging system histograms; and (e) communicate with the CRT and printing terminals and an exterior control system.
Abstract:
A non-contact optical gauging device in which a laser beam is deflected to produce a bidirectional scan. The beam is split; a measuring portion scans an object being inspected while the other portion scans a calibration reticle having alternating opaque and transparent bands. The alternating transmission and ocultation of the beam through the reticle is used to generate calibration pulses, each representing a predetermined increment of movement of the calibration beam. Ocultation of the measuring beam by the object being measured generates a signal which is used to control counting of the calibration pulses as an indication of the dimension being measured. Bidirectional averaging is employed to minimize errors due to object motion in the direction of beam scanning. Variations are disclosed in which two measuring beams and one or two calibration beams, are employed for measuring large objects or for dual axis measurement, the latter by orthogonal projection onto the object being measured.
Abstract:
The invention relates to an apparatus for monitoring the assembly of filter tipped cigarettes. After assembly a succession of the cigarettes are advanced transversely to their length through an optical device in which at least two beams of light are transmitted across the plane of movement of the cigarettes between respective transmitters and photosensitive elements. Each beam is interrupted by each cigarette for a time depending upon the effective transverse dimension of the cigarette as seen by that beam and corresponding pulses from the photosensitive elements are summed and integrated. The output of the integrator is sampled to determine if its value lies within a predetermined range and a fault pulse for rejecting cigarette is produced if the value lies outside the predetermined range.
Abstract:
A narrow collimated light beam, such as a laser beam, is directed towards a mirror which is rotated to effect rotary planar scanning or sweeping of a lens constructed to convert the rotary scanning beam into a parallel scanning beam. An article to be measured is positioned in the path of the parallel scanning beam at generally the focal point of the lens, and interruptions of the parallel scanning beam, as produced by the article, are sensed by a photodetector. The photodetector controls transmission of pulses or signals to means for counting pulses produced by a high frequency generator so that the counted pulses correspond to the dimension of the article at the plane of the parallel scanning beam. In this invention a lens is positioned in the path of the light beam and changes a narrow substantially round light beam into an elongate or substantially flat light beam which is scanned across an object for measurement thereof. The greatest dimension of the light beam is substantially normal to the direction of scan movement. Thus, if there should be irregularities or small particles of foreign material upon the surface of the object or adjacent thereto, the entire light beam is not completely interrupted by such particles or by such irregularities. Thus, a light beam is received by the photodetector in accordance with the average dimension or contour of the object at the measured portion thereof. Thus, the dimension of the object is measured without consideration of small irregularities or small or minute particles of foreign material or the like which may be present upon or adjacent the object at the measured portion thereof.
Abstract:
Method and apparatus for determining the width of an elongated element, such as a filament or slit which comprise producing a moving interference fringe zone by converging two beams of coherent light of the same intensity but slightly different frequency; positioning the element within the fringe zone in such manner that the longitudinal axis of the element is substantially normal to the plane of the convergent beams, namely, parallel to the plane of the fringes; maintaining the element substantially spatially stationary relative to the zone, whereby the moving fringe pattern continuously sweeps across the element; and determining the ratio of the AC to DC signal components of the radiation scattered or transmitted by the element. The method and system include respectively the step and means therefor of adjusting or scanning the fringe period value around the element to determine the size capable of producing a minimum AC/DC ratio. In the case of a system substantially free from noise, including non-compensating optical noise factors introduced by the element being measured, a zero ratio indicates that the filament diameter or slit width equals the known fringe period, and a non-zero ratio indicates diameter or slit width deviation from the fringe period, the degree of which can be determined from the signal ratio with the use of known means by adjusting the fringe period until the AC component of the signal becomes zero. In the case of a system having a substantial amount of noise, the AC/DC minimum ratio obtained at a given fringe period may have a finite value and indicates an element width equal to the given fringe period times a constant, the constant being the ratio of the width of the given element and the given fringe period. The element, though spatially stationary in the fringe zone, can be continuously moving longitudinally. The process and system are particularly useful for monitoring the width of manufactured elements and, by automatic feedback, correcting deviations. In some applications where change in the magnitude of the DC signal component during the fringe period scan is sufficiently nominal with respect to permissible width-sensing error, the AC/DC ratio measurement can be dispensed with and determination of the AC signal component minimum alone can be employed.