Abstract:
An accelerometer device for determining the acceleration of an object, along three axes X, Y and Z of a main orthonormal reference system and subject to a surrounding pressure, comprises a number N of accelerometer sensors of MEMS type, N at least equal to two, each sensor defined by construction in an auxiliary reference system comprising three orthonormal axes, the set of accelerometer sensors comprising at least one pair of sensors mounted to face in opposite directions and parallel to one another, and: for each of the pairs of accelerometer sensors, the sensors have components of opposite sign along two axes of the main reference system; and the axes of the reference system along which the components of the accelerometer sensors oppose the set of pairs of sensors in twos comprise at least two of the three axes X, Y and Z of the reference system, to compensate for the effect of the pressure on at least two axes of the reference system.
Abstract:
A production method for a headline sonar cable (20, 120) that exhibits a high breaking-strength and lighter weight than a conventional steel headline sonar cable. Producing the headline sonar cable (20, 120) is characterized by the steps of: a. providing an elongatable internally-located conductive structure (34, 134) that is adapted for data signal transmission; and b. braiding a strength-member jacket layer (52) of polymeric material around the structure (34, 134) while ensuring that the structure (34, 134) is slack when surrounded by the jacket layer (52). The structure (34, 134) of the cable (20, 120) retains conductivity upon stretching of the jacket layer (52) surrounding the structure (34, 134) that lengthens the cable (20, 120). For one embodiment of the method a conductor (20) wrapped around a rod (24) and enclosed within a sheath layer (32) forms the structure (34, 134). For another embodiment of the method a braided conductor (122) enclosed within a braided sheath (124) and a polymeric layer (132) forms the structure (34, 134).
Abstract:
Buoyant tail section of a geophysical streamer. At least some of the example embodiments are methods of performing a geophysical survey in a marine environment, the method including: towing an active section of a geophysical streamer in the marine environment, the active section having a buoyancy; towing a tail section, the tail section coupled to a distal end of the active section, the towing of the tail section by way of the active section, and at least a portion of the tail section having a buoyancy that is both positively buoyant and greater than buoyancy of the active section; towing a tail buoy in the marine environment, the tail buoy coupled to a distal end of the tail section, and the towing of the tail buoy by way of the tail section; and gathering geophysical survey data by way of the active section.
Abstract:
Pressure activated linear locking mechanisms and related methods. At least some of the illustrative embodiments are systems including: a cover member defining an inner surface, an outer surface, a length, and a first locking portion; a first hollow defined in the locking portion, the first hollow extending along the length of the cover member; a locking member defining a first appendage extending along a first side, the first appendage defines a cross-section and an internal volume; said first appendage disposed within the first hollow, and when the releasable cover is exposed to atmospheric pressure, the first appendage in an inflated condition; and the first appendage is configured to transition to a deflated condition in response to a predetermined pressure greater than the initial pressure.
Abstract:
The invention relates to a seismic streamer (1) for underwater towing at a towing speed in ice-free or wholly or partially icy water, the streamer (1) is provided with birds (2) spaced along the streamer, the streamer including the birds (2) has negative buoyancy, the birds have wings (8) which can be set so that the birds during movement in the water apply an upward or downward force on the streamer. The streamer (1) is provided with buoyant bodies (4) spaced along the streamer, the buoyant bodies are connected to the streamer by spacer elements (5), the streamer including the birds, the buoyant bodies with associated spacer elements and any other equipment together have positive buoyancy. The invention also relates to a corresponding method for securing a seismic streamer (1) from damage at a substantial reduction or cessation of towing speed when towing underwater in ice-free or wholly or partially icy water.
Abstract:
Various methods and apparatuses for facilitating cleaning of submerged geophysical equipment using sound waves transmitted at ultrasonic frequencies are disclosed. In some embodiments, one or more transducers may be configured to transmit sound at one or more ultrasonic frequencies. The sound at ultrasonic frequencies may be transmitted in the vicinity of submerged geophysical equipment, such as a sensor streamer towed behind a survey vessel. Obstructions (e.g., barnacle larvae) adhering to surfaces of the geophysical equipment may be loosened or removed altogether when ultrasonic transmissions occur within its vicinity. The transducers used to transmit the ultrasonic frequencies may be implemented in various ways, such as being attached to a remote operated vehicle, a cleaning unit, or as being an integral component of the geophysical equipment.
Abstract:
Streamers used in mapping strata beneath a marine body are described, such as in a flexible neutrally buoyant towed array. A connector is used to longitudinally join a first and second streamer section and/or to connect a streamer section to a streamer stabilizer. The connector contains at least one of: (1) means for distributing axial stress over a larger volume or along a longer x-axis length of the streamer relative to the absence of the means for distributing; (2) forming an increasing radius of curvature along the length of the connector as a function of distance from the first leading streamer cable section; and (3) co-moving an inner stress bearing element and an outer wall of the connector preventing intermediate streamer elements, such as a wire bundle from picking up noise related to the movement stress.
Abstract:
A seismic cable including sensors, data transmission lines extending the length of the seismic cable for conveying data signals issued from the sensors. Controllers distributed along the seismic cable operate as an interface between the sensors and the data transmission lines. Power supplying lines supply power to the controllers and the sensors. X power supplying lines are alternately connected to one out of X successive controllers. Each controller is adapted for applying on a power supplying line detected as defective the electrical tension provided by another power supplying line. Y data transmission lines are alternately connected to one out of Y successive controllers. Each controller is adapted to redirect towards at least one adjacent controller the data associated with a data transmission line which is determined to be defective.
Abstract:
Sensors used in mapping strata beneath a marine body are described, such as used in a flexible towed array. A first sensor is a motion sensor including a conductive liquid in a chamber between a rigid tube and a piezoelectric motion film circumferentially wrapped about the tube. A second sensor is a traditional acoustic sensor or a novel acoustic sensor using a piezoelectric sensor mounted with a thin film separation layer of flexible microspheres on a rigid substrate. Additional non-acoustic sensors are optionally mounted on the rigid substrate for generation of output used to reduce noise observed by the acoustic sensors. Combinations of acoustic, non-acoustic, and motion sensors co-located in rigid streamer housing sections are provided.
Abstract:
Method and apparatus for suppressing cable dynamics in a device towed in water. The apparatus includes at least one section for suppression of motion, wherein the at least one section includes an axial motion suppression section; and the axial motion suppression section comprising equipment for the attenuation of axial vibrations in an electro-mechanical cable. The equipment is configured to produce a digressive stiffness curve.