Abstract:
The present invention relates to an improved modified polyamide having increased molecular weight and substantially the same or marginally increased viscosity versus shear weight as the unmodified polyamide. A method for modifying polyamides to provide these improved properties also is disclosed wherein a polyamide having an initial molecular weight is contacted with at least one organic peroxide, at least one coagent and/or one free-radical trap to form an improved polyamide having an increased molecular weight and substantially the same viscosity versus shear rate. The present disclosure also relates to polyamide compositions comprising organic peroxides and articles made from the modified polyamide.
Abstract:
Fibers sized with a coating of amorphous polyetherketoneketone are useful in the preparation of reinforced polymers having improved properties, wherein the amorphous polyetherketoneketone can improve the compatibility of the fibers with the polymeric matrix.
Abstract:
A process for crosslinking an elastomer composition in the presence of an organic peroxide formulation is disclosed. The organic peroxide formulation may comprise additional compounds chosen from bis-, tri- and higher poly-maleimides, bis-, tri- and higher poly-citraconimides, peroxide-crosslinkable silicone elastomers, p-phenylenediamine based antiozonants, sulfur containing organic compounds which are accelerators for the sulfur curing (crosslinking) of polymers which are curable/crosslinkable by sulfur, and polysulfide polymers. Methods of manufacturing elastomer articles, methods of reducing mold-fouling, elastomer compositions, and elastomer articles made from the elastomer compositions are also disclosed.
Abstract:
The shelf life of polyurethane polyol pre-blends containing halogenated olefins is extended by encapsulation of active components such as catalysts anti/or surfactants. The active component is encapsulated in a crystallizable or thermoplastic polymer. The encapsulated particles have a size of 2,800 microns or less and the active components are not significantly leaked out, particularly in the presence of halogenated olefins.
Abstract:
The invention relates to an acrylic copolymer additive useful as a process aid in highly filled polyvinyl chloride (PVC) and chlorinated polyvinyl chloride (CPVC) composites. The acrylic additive is especially useful in highly filled PVC flooring tiles, rolled flooring, pipe and siding. The acrylic copolymer additive contains from 50 to 79 weight percent of methyl methacrylate monomer units, and has a Tg of less than 90° C.
Abstract:
A thermoplastic composition comprises a thermoplastic resin (e.g., PVC) and less than 4.0 parts of a core-shell impact modifier per 100 parts by weight of the thermoplastic resin, wherein the core-shell impact modifier has a rubber content of at least 90%. A core-shell impact modifier composition comprises core-shell impact modifier particles having a rubber content that is greater than 92 wt % of the core-shell impact modifier particles. Articles of manufacture made from the thermoplastic compositions are also disclosed.
Abstract:
Disinfectant compositions include 0.001 to 10% by weight of hydrogen peroxide or a hydrogen peroxide source based on the total weight of the composition; 0.001 to 20% by weight of at least one amphoteric surfactant based on the total weight of the composition; and 0.001 to 0.8% by weight of at least one alkali metal or alkaline earth metal salt of a cyclic or heterocyclic aromatic compound comprising at least one hydroxyl group, carboxylic group, or combination thereof based on the total weight of the composition. The disinfectant compositions are particularly effective at treating surfaces contaminated with resistant bacteria, such as Staphylococcus aureus at a fast killing rate.
Abstract:
A blowing agent for thermosetting foams is disclosed. The blowing agent is a hydrofluoroolefin (HCFO), preferably HFCO-1234ze in combination with a hydrochlorofluoroolefin (HCFO) preferably one selected from HCFO-1233zd, HCFO-1223, HCFO-1233xf and mixtures thereof. The blowing agent is effective as a blowing agent in the manufacture of thermosetting foams.
Abstract:
The invention relates to a polyvinylidene fluoride polymer having an ultra-high molecular weight, and unexpected physical properties. The ultra-high molecular weight polymer is clear, has a lower melting point, reduced crystallinity, excellent impact resistance, and a high elongation at the yield point. The ultra-high molecular weight polyvinylidene fluoride can be alone, or blended with other polymers, in final applications and articles.
Abstract:
A method of separating a composition containing at least one organofluorine compound from at least one inorganic compound by contacts the composition with a semipermeable membrane. Other methods separate a organofluorine compound from a composition containing at least one other organofluorine compound or chlorocarbon. Methods also include isolating a single organofluorine compound from a composition comprising a mixture of organofluorine compounds, chlorocarbons, and/or inorganic compounds.