摘要:
The disclosure relates to a microlithographic projection exposure apparatus, as well as related components and methods. In some embodiments, a microlithographic projection exposure apparatus includes an illumination system and a projection objective, where the illumination system can illuminate an object plane of the projection objective and the projection objective can produce the image of the object plane on an image plane. A polarization-dependent transmission can be produced in the illumination system such that, for at least one polarization distribution in respect of the light impinging on the object plane, a non-homogeneous intensity distribution in the object plane is obtained. The non-homogeneous intensity distribution can afford a homogeneous intensity distribution in the image plane by virtue of polarization-dependent transmission properties of the projection objective.
摘要:
An illumination system for illuminating a reticle that moves along a scanning direction in a microlithographic projection exposure apparatus has an optical axis and an optical component producing an illumination angle distribution of the projection light. In accordance with the illumination angle distribution, a plurality of poles is illuminated in a pupil plane of the illumination system. The poles form an arrangement that is only mirror-symmetrical with respect to an axis that is orthogonal to the optical axis of the illumination, but neither parallel nor perpendicular to the scanning direction.
摘要:
A projection exposure apparatus for microlithography comprises illumination optics for illuminating object field points of an object field in an object plane is disclosed. The illumination optics have, for each object field point of the object field, an exit pupil associated with the object point, where sin(γ) is a greatest marginal angle value of the exit pupil. The illumination optics include a multi-mirror array that includes a plurality of mirrors to adjust an intensity distribution in exit pupils associated to the object field points. The illumination optics further contain at least one optical system to temporally stabilize the illumination of the multi-mirror array so that, for each object field point, the intensity distribution in the associated exit pupil deviates from a desired intensity distribution in the associated exit pupil in the case of a centroid angle value sin(β) by less than 2% expressed in terms of the greatest marginal angle value sin(γ) of the associated exit pupil and/or, in the case of ellipticity by less than 2%, and/or in the case of a pole balance by less than 2%.
摘要:
Illumination optics for a microlithographic projection exposure apparatus is used for illumination of an object field in the object plane with illumination light of a radiation source. The illumination optics has an optical beam influencing element which is divided into at least two beam influencing regions in order to generate various illumination modes for the object field which are independent of a light attenuation. The optical beam influencing element is displaceable between a first beam influencing position where a first one of the beam influencing regions is exposed to a bundle of the illumination light, and at least another beam influencing position where another one of the beam influencing regions is exposed to the bundle of the illumination light. Each of the beam influencing regions has a surface which is exposable to illumination light and has a long and a short side length, with the optical beam influencing element being displaceable perpendicular to the long side length. The result is an illumination optics which allows rapid switching between various illumination settings, preferably within fractions of a second and substantially without light loss.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus, as well as related components and methods. In some embodiments, a microlithographic projection exposure apparatus includes an illumination system and a projection objective, where the illumination system can illuminate an object plane of the projection objective and the projection objective can produce the image of the object plane on an image plane. A polarization-dependent transmission can be produced in the illumination system such that, for at least one polarization distribution in respect of the light impinging on the object plane, a non-homogeneous intensity distribution in the object plane is obtained. The non-homogeneous intensity distribution can afford a homogeneous intensity distribution in the image plane by virtue of polarization-dependent transmission properties of the projection objective.
摘要:
An illumination system of a microlithographic projection exposure apparatus includes a beam deflection array including a number beam deflection elements, for example mirrors. Each beam deflection element is adapted to deflect an impinging light beam by a deflection angle that is variable in response to control signals. The light beams reflected from the beam deflection elements produce spots in a system pupil surface. The number of spots illuminated in the system pupil surface during an exposure process, during which a mask is imaged on a light sensitive surface, is greater than the number of beam deflection elements. This may be accomplished with the help of a beam multiplier unit that multiplies the light beams reflected from the beam deflection elements. In another embodiment the beam deflecting elements are controlled such that the irradiance distribution produced in the system pupil surface changes between two consecutive light pulses of an exposure process.
摘要:
A polarization-modulating optical element consisting of an optically active crystal material has a thickness profile where the thickness, as measured in the direction of the optical axis, varies over the area of the optical element. The polarization-modulating optical element has the effect that the plane of oscillation of a first linearly polarized light ray and the plane of oscillation of a second linearly polarized light ray are rotated, respectively, by a first angle of rotation and a second angle of rotation, with the first angle of rotation and the second angle of rotation being different from each other.
摘要:
An illumination system of a microlithographic projection exposure apparatus includes a beam deflection array including a number beam deflection elements, for example mirrors. Each beam deflection element is adapted to deflect an impinging light beam by a deflection angle that is variable in response to control signals. The light beams reflected from the beam deflection elements produce spots in a system pupil surface. The number of spots illuminated in the system pupil surface during an exposure process, during which a mask is imaged on a light sensitive surface, is greater than the number of beam deflection elements. This may be accomplished with the help of a beam multiplier unit that multiplies the light beams reflected from the beam deflection elements. In another embodiment the beam deflecting elements are controlled such that the irradiance distribution produced in the system pupil surface changes between two consecutive light pulses of an exposure process.
摘要:
An illumination system for a microlithography projection exposure apparatus has a light distribution device (21), which generates a two-dimensional intensity distribution from the light from a primary light source, for example a laser, in a first surface (25) of the illumination system. A fly's eye condenser (55) having a first and a second raster arrangement (40) of optical elements serves as a light mixing device for homogenizing the illumination in the illumination field of the illumination system. The fly's eye condenser has a first raster arrangement (35) of first raster elements (36) and also a second raster arrangement (40) of second raster elements (41). The light distribution device comprises at least one diffractive optical element (21) for generating an angular distribution whose far field has separate or contiguous luminous zones which are coordinated with the form and size of the first raster elements (36).
摘要:
The disclosure provides an illumination system of a microlithographic projection exposure apparatus, as well as related methods and components. In some embodiments, the illumination system includes an optical element configured so that, when a linearly polarised entry beam which has an angle spectrum is incident on the first optical element, a maximum aperture angle of the entry beam at the first optical element is not more than 35 mrad. A component, which is rotationally symmetric about an optical axis of the system, of a birefringence present in the illumination system can be at least partially compensated by the first optical element.