Abstract:
A method and system in a routing network sends a request for the performance of a task from an originating node in a routing system to nodes having an interface connection with the originating node. Upon receiving a response to the request from the one or more nodes, one or more of the nodes is selected to perform the task. Any node included in the network can comprise an originating node, and the steps of sending and selecting are performed substantially automatically. A preferential order of nodes automatically and dynamically maintained in dependence on the performance of task(s) by the nodes.
Abstract:
Device, system and method for ablating tissue of a heart of a patient. The tissue is clamped between a pair of opposing jaws. A portion of the tissue is ablated at a first generally linear position on the tissue by applying ablative energy to two of a plurality of elongate electrodes, each of the two of the plurality of elongate electrodes being coupled in opposing relationship to each other and the pair of opposing jaws, respectively. An effectiveness of the ablation is sensed at a second generally linear position on the tissue with at least one of the plurality of elongate electrodes positioned on one of the pair of opposing jaws. The second linear position on the tissue is laterally distal to the first linear position on the tissue with respect to the atrium of the heart.
Abstract:
A shroud support method and apparatus for a ceramic component of a gas turbine having: an outer shroud block having a coupling to a casing of the gas turbine; a spring mass damper attached to the outer shroud block and including a spring biased piston extending through said outer shroud block, wherein the spring mass damper applies a load to the ceramic component; and the ceramic component has a forward flange and an aft flange each attachable to the outer shroud block.
Abstract:
A trans-septal guide catheter for providing access through the septum separating a first heart chamber from a second heart chamber that includes an elongated guide catheter body extending between guide catheter proximal and distal ends. A distal segment of the guide catheter is adapted to be inserted through the septum to locate the distal segment of the guide catheter within one of the first heart chamber and the second heart chamber. The catheter body encloses a guide catheter lumen adapted to provide access into the one of the first heart chamber and the second heart chamber through a guide catheter lumen proximal end opening and a guide catheter lumen distal end opening. A retention mechanism engages the septum and maintains the distal segment of the guide catheter extending into the one of the first heart chamber and the second heart chamber.
Abstract:
A method of applying ablation energy to achieve transmurality including applying ablation energy at a starting power to a tissue site and monitoring the impedance of the tissue site. The power applied to the tissue site can be increased in response to detection of a power plateau or application of a first power for a minimum time according to some embodiments. A power applied to the tissue site can be reduced in response to an increase in impedance according to some embodiments. Transmurality can be indicated in response to a transmurality plateau following a rise in impedance according to some embodiments.
Abstract:
A method of surgical dissection of tissue with a dissector comprising: an elongate shaft comprising a proximal portion and a distal portion, wherein the distal portion comprises a plurality of segments that articulate with respect to one another and the plurality of segments includes a distal segment having a distal end; and a handle attached to the proximal portion of the shaft, wherein the handle comprises controls for articulating the plurality of segments of the distal portion of the shaft with respect to one another, comprising the steps of: positioning the distal end of the dissector in a body; advancing the distal end through the body to dissect tissue; and simultaneously articulating the plurality of segments with respect to one another. A method of surgical dissection of tissue and guiding a second device to a desired physiological location with a first device.
Abstract:
A target (1) for use with a projectile has a web (7) defining a target face and a back board (29). The target face is divided into multiple segments (3, 5). A cup (19) filled with a projectile-receptive insert material (27) is mounted for sliding within each segment. Each cup has one or more resilient cushions (35) between the cup and the back board. Each cushion has at least one electroconductive area. The back board has pairs of switch contacts (25), forming electrical switches. The projectile impacting a cup at the target face with sufficient force causes the cup to slide within the segment urging the electroconductive area of the one or more cushions to touch the switch contacts, resulting in closing of the switch defined by the switch contacts and signaling a hit to onboard electronic circuitry. The at least one cushions beneath that cup return the cup substantially to its original position.
Abstract:
Disclosed is a process for the preparation of multilayered, shaped articles having high transparency and low haze having at least one layer contains one or more thermoplastic polymers selected from polyesters, polycarbonates, and homogeneous blends thereof, and a separate layer which contains a transamidized, homogeneous blend of a least two polyamides. The thermoplastic polymer components and the polyamide components have refractive indices which differ by about 0.006 to about −0.0006. The small difference in the refractive indices enable the incorporation of regrind into one or more of the layers of the article while maintaining high clarity. These articles can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into one or more layers to impart oxygen-scavenging properties.
Abstract:
A method of thermal ablation using high intensity focused ultrasound energy includes the steps of positioning one or more ultrasound emitting members within a patient, emitting ultrasound energy from the one or more ultrasound emitting members, focusing the ultrasound energy, ablating with the focused ultrasound energy to form an ablated tissue area and removing the ultrasound emitting member.
Abstract:
The damper system includes a ceramic composite shroud in part defining the hot gas path of a turbine and a spring-biased piston and damper block which bears against the backside surface of the shroud to tune the vibratory response of the shroud relative to pressure pulses of the hot gas path in a manner to avoid near or resonant frequency response. The damper block has projections specifically located to bear against the shroud to dampen the frequency response of the shroud and provide a thermal insulating layer between the shroud and the damper block.