Abstract:
Method for fabricating a gyroscope including: fabricating a SMS wafer where a first wafer, a metal film, and a second wafer are sequentially stacked; forming a cantilever or a bridge shaped-structure on the relevant portion of the first wafer through the photolithography process; attaching to the surface of the first wafer, a first cap made of glass and having a predetermined space for sealing the movable structure in a vacuum state; separating and removing the metal film and the second wafer from the first wafer; and attaching to the backside of the first wafer, the second cap which is structurally and materially symmetric to the first cap. The SMS wafer is fabricated by depositing the metal film on the second wafer and bonding the first wafer on the metal film using metal paste or material of polymer series. With lower material costs, improvements in performance and characteristics can be achieved.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.
Abstract:
A filter using bulk acoustic wave resonators (BAWRs) is provided including BAWRs connected in series or in parallel to each other. A BAWR set is configured by connecting an inductance and capacitance (L/C) element to each BAWR in series or in parallel.
Abstract:
An inkjet printhead and a method of manufacturing the printhead. The inkjet printhead includes a substrate through which an ink supply passage is formed, a chamber plate stacked on the substrate having an ink chamber filled with ink supplied through the ink supply passage and heating resistors to heat the ink formed in the ink chamber, a nozzle plate formed on the chamber plate and through which a plurality of nozzles through which ink is ejected are formed, and a water repellent layer formed on the nozzle plate, wherein portions of a covalent bond formed by reaction between the material forming the nozzle plate and a hydrolysis material used to form the water repellent layer are discontinuously formed.
Abstract:
Disclosed are an ink ejecting device and a method of manufacturing the same. The disclosed ink ejecting device includes an inkjet head including a substrate, which includes an ink feed hole, a plurality of via holes, which are formed in the rear surface of the substrate, and which expose the ink feed holes therethtough, a chamber layer stacked on the substrate, and a nozzle layer stacked on the chamber layer, and includes a base header, which is attached to the inkjet head and includes a plurality of ink supply slots having a corresponding arrangement with respect to the via holes.
Abstract:
An apparatus to sense the temperature of an ink-jet head includes at least one or more CMOS (complementary metal oxide semiconductor) lateral BJTs (bipolar junction transistors) to sense the temperature of the ink-jet head, and a current supply unit to supply a current to the CMOS lateral BJTs. Minimum sized CMOS lateral BJTs are applied to an ink-jet printer head so that precise temperature control can be performed in a shuttle or array type ink-jet printer.
Abstract:
A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.
Abstract:
A wafer level packaging cap for covering a device wafer with a device thereon and a fabrication method thereof are provided. The method includes operations of forming a plurality of connection grooves on a wafer, forming a seed layer on the connection grooves, forming connection parts by filling the connection grooves with a metal material, forming cap pads on a top surface of the wafer to be electrically connected to the connection parts, bonding a supporting film with the top surface of the wafer on which the cap pads are formed, forming a cavity on a bottom surface of the wafer to expose the connection parts through the cavity, and forming metal lines on the bottom surface of the wafer to be electrically connected to the connection parts.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.
Abstract:
An inkjet printhead and a method of manufacturing the printhead. The inkjet printhead includes a substrate through which an ink supply passage is formed, a chamber plate stacked on the substrate having an ink chamber filled with ink supplied through the ink supply passage and heating resistors to heat the ink formed in the ink chamber, a nozzle plate formed on the chamber plate and through which a plurality of nozzles through which ink is ejected are formed, and a water repellent layer formed on the nozzle plate, wherein portions of a covalent bond formed by reaction between the material forming the nozzle plate and a hydrolysis material used to form the water repellent layer are discontinuously formed.