Abstract:
A method or system for managing the noise level of a vehicle establishes one or more noise sensitive zones in a work area. A present location is determined for a corresponding vehicle in the work area. A charge level is measured. The charge level pertains charge level of an energy storage device of the vehicle. A mode of operation of the vehicle is selected based on the determined present location of the vehicle, the established noise sensitive zones, and the measured charge level. The mode of operation is selected from a quiet mode and a charging mode, or the equivalent of either.
Abstract:
An optical range finder for determining the distance comprises a focusing optical member that focuses emitted electromagnetic radiation upon a micro-mirror array. A processor controls the micro-mirror array to direct the focused electromagnetic radiation into a defined radiation pattern consistent with a lower resolution scan over a greater area and a higher resolution scan over a lesser area of interest within the greater area. A transmission optical member focuses the defined radiation pattern toward an object. A reception optical member receives electromagnetic radiation reflected from the object. A detector detects the receipt of the reflected electromagnetic radiation. A timer determines an elapsed time, between transmission of the electromagnetic radiation to the object and receipt of the electromagnetic radiation from the object, to facilitate determination of the distance between the object and the range finder.
Abstract:
A method of adjusting a speed of a mobile machine is provided. Image data of a location is collected where currently generated sensor data and previously generated sensor data indicate a discontinuity in sensor data. The image data is analyzed to determine if a non-motion blur score for the image data is above a threshold value. Then, a speed of the mobile machine is adjusted based on a determination that the non-motion blur score is above the threshold value.
Abstract:
A method for regenerating a boundary of an area for containing a mobile machine is provided. An emitter is detected in an area designated to contain the mobile machine. In response to detecting the emitter, a function is performed. In addition, the emitter is reapplied on a predetermined time interval basis over an existing detected emitter to minimize deterioration of a strength of the emitter due to time and environmental factors.
Abstract:
Systems and techniques are provided for managing an interface between a machine or work vehicle and a surface that the machine/work vehicle travels on in order to provide an optimum work performance level that balances fuel efficiency and surface adversity. Fleet management and reporting capabilities pertaining to such interface management are also provided.
Abstract:
The illustrative embodiments provide a computer program product for controlling a vehicle. In an illustrative embodiment, a computer program product is comprised of a computer recordable media having computer usable program code for identifying a dynamic condition. When the dynamic condition is identified, computer usable program code using a knowledge base controls the vehicle.
Abstract:
The illustrative embodiments of the present invention provide a method and apparatus for managing drip tape. A vehicle is configured to move across a field. A drip tape collection system is associated with the vehicle configured to raise a portion of the drip tape from the ground in a field. A chopper is configured to separate the portion of the drip tape received from the drip tape collection system into a plurality of pieces and enable the plurality of pieces to decompose.
Abstract:
The illustrative embodiments provide an apparatus for performing horticultural tasks comprising a processor unit, a first number of communication links from the processor unit to a plurality of databases stored on a number of data storage devices, and a second number of communication links from the processor unit to a diagnostic system. The processor unit is configured to execute the diagnostic system and access the plurality of databases on the number of data storage devices to identify a pest problem and generate a treatment plan to address the pest problem.
Abstract:
Therefore, the illustrative embodiments provide a computer implemented method and system for providing an application of a resource to plants. A plurality of per plant prescriptions for a plurality of plants are received and a source is selected to fulfill the plurality of per plant prescriptions to form a selected source. Movement of a mobile utility vehicle is controlled to the selected source, the resource is obtained, and movement of the mobile utility vehicle is controlled to each plant in the plurality of plants. The resource is applied from the mobile utility vehicle to each plant according to the per plant prescription.
Abstract:
A method for scheduling mowing tasks by a robotic mower is provided. An estimated height of grass cut by the robotic mower is determined for a predetermined number of past mowing tasks. The estimated height of grass cut is compared with a predicted height of grass in an operating environment for the robotic mower. Then, a mowing schedule for the robotic mower is adjusted by decreasing a time between mowing tasks in response to the estimated height of grass cut being greater than the predicted height of grass. Alternatively, the mowing schedule for the robotic mower is adjusted by increasing the time between mowing tasks in response to the estimated height of grass cut being less than the predicted height of grass.