Abstract:
A method of controlling application of a substance to vegetation using data obtained via a mobile machine is provided. A height of the vegetation is measured during a scheduled task of the mobile machine. The measured height of the vegetation is compared with a calculated height of the vegetation. Then, an amount of the substance applied by an irrigation system to an area containing the vegetation is adjusted based on a difference between the measured height of the vegetation and the calculated height of the vegetation.
Abstract:
A method of controlling application of a substance to vegetation using data obtained via a mobile machine is provided. A height of the vegetation is measured during a scheduled task of the mobile machine. The measured height of the vegetation is compared with a calculated height of the vegetation. Then, an amount of the substance applied by an irrigation system to an area containing the vegetation is adjusted based on a difference between the measured height of the vegetation and the calculated height of the vegetation.
Abstract:
A method for scheduling mowing tasks by a robotic mower is provided. An estimated height of grass cut by the robotic mower is determined for a predetermined number of past mowing tasks. The estimated height of grass cut is compared with a predicted height of grass in an operating environment for the robotic mower. Then, a mowing schedule for the robotic mower is adjusted by decreasing a time between mowing tasks in response to the estimated height of grass cut being greater than the predicted height of grass. Alternatively, the mowing schedule for the robotic mower is adjusted by increasing the time between mowing tasks in response to the estimated height of grass cut being less than the predicted height of grass.
Abstract:
A differential steering and traction control system for an electrically propelled mower. Each of the front wheels has an electric motor wheel drive, and each rear wheel may have an electric steering motor. The operator's station has a steering wheel and a speed control. An electronic controller provides steering commands to the electric steering motor and separate speed commands to each electric motor wheel drive based on the angle of the rear wheel and the position of the speed control.
Abstract:
A differential steering assist system is provided for an off road utility vehicle with a pair of steerable front wheels and at least one pair of driven left and right rear wheels. The system uses a steering position sensor and wheel speed sensors that sense the wheel speed of the driven left and right rear wheels. An electronic control unit provides speed reducing commands to the left or right rear wheels based on the sensed steering position and sensed wheel speed.
Abstract:
A method of controlling application of a substance to vegetation using data obtained via a mobile machine is provided. A height of the vegetation is measured during a scheduled task of the mobile machine. The measured height of the vegetation is compared with a calculated height of the vegetation. Then, an amount of the substance applied by an irrigation system to an area containing the vegetation is adjusted based on a difference between the measured height of the vegetation and the calculated height of the vegetation.
Abstract:
A method for scheduling mowing tasks by a robotic mower is provided. An estimated height of grass cut by the robotic mower is determined for a predetermined number of past mowing tasks. The estimated height of grass cut is compared with a predicted height of grass in an operating environment for the robotic mower. Then, a mowing schedule for the robotic mower is adjusted by decreasing a time between mowing tasks in response to the estimated height of grass cut being greater than the predicted height of grass. Alternatively, the mowing schedule for the robotic mower is adjusted by increasing the time between mowing tasks in response to the estimated height of grass cut being less than the predicted height of grass.
Abstract:
A method of controlling application of a substance to vegetation using data obtained via a mobile machine is provided. A height of the vegetation is measured during a scheduled task of the mobile machine. The measured height of the vegetation is compared with a calculated height of the vegetation. Then, an amount of the substance applied by an irrigation system to an area containing the vegetation is adjusted based on a difference between the measured height of the vegetation and the calculated height of the vegetation.
Abstract:
A system and method for controlling a vehicle for regenerative braking facilitates decreasing the warm-up time of the fuel cell stack from start-up to full electrical power generation capacity. A controller detects a starting time of a fuel cell stack associated with a vehicle. A drive motor generates electrical energy during braking or deceleration of the vehicle, where the drive motor is mechanically coupled to at least one wheel of the vehicle. A controller refers to or determines a time window following the starting time. The switching unit routes the electrical energy to a resistive load associated with a heat exchanger thermally coupled to a fuel cell stack of the vehicle if the electrical energy is generated during the time window.