Abstract:
A brake device includes: a mechanical pressure regulating part having a high-pressure port, a low-pressure port, a pilot pressure input port, and an output port which outputs fluid pressure corresponding to the pressure supplied to the pilot pressure input port by fluid pressures supplied to both of the high- and low-pressure ports, to a chamber for a master piston; a high-pressure source connected to the high-pressure port and the pilot pressure input port; a low-pressure source connected to the low-pressure port and the pilot pressure input port; and an electrically-operated pilot pressure generating part which includes control valves for controlling flows of the brake fluid between the high-pressure source and the pilot pressure input port, and between the low-pressure source and the pilot pressure input port, respectively, and which outputs desired fluid pressure to the pilot pressure input port by controlling flow of the brake fluid with control valves.
Abstract:
A color image forming apparatus includes one image bearing member, an image forming unit configured to successively form images with toners in plural different colors on the image bearing member per color, a revolving intermediate transfer member, and a transfer unit configured to successively transfer the images on the image bearing member onto the intermediate transfer member in a superimposed relation in a transfer section. Images are transferred in a superimposed relation by executing control such that, when formation of the next image is not started at a due timing of starting the formation of the next image, a timing at which transfer is started after the formation of the next image and a timing at which a leading end of the previously transferred image reaches the transfer section are matched with each other by temporarily changing the revolving speed of the intermediate transfer member or stopping it.
Abstract:
A pick roller picks a sheet stacked in a hoper and transports the sheet toward a separating section at which a separator roller and a brake roller is provided. The separator roller and the brake roller transport the sheet one by one. A first unit is provided on the brake roller and is adapted to detect a rotation of the brake roller. A second unit is provided in the separating section and is adapted to detect a speed of the sheet. A controller is operable to determine an entry state of the sheet with respect to the separator roller based on presence or absence of the sheet in the separating section determined from the speed of the sheet in the separating section and whether or not the brake roller is rotating, and to optimally control a force acting in separation for the sheet.
Abstract:
An image processing method executed by an image processor comprising a displaying unit, a storage unit, and a control unit, wherein the storage unit includes an image data storage unit that stores image data displayed in thumbnail form and a keyword associated with the image data, and the method includes a keyword obtaining step of obtaining the keyword corresponding to the image data stored in the image data storage unit; and a thumbnail image with keyword displaying step of displaying the keyword obtained at the keyword obtaining step on the displaying unit, with the keyword being overlapped with the image data.
Abstract:
On a first substrate are formed a TFT provided to each pixel, an insulating film which covers the TFT, and a reflective layer which is provided on the insulating film so as to be insulated from the TFT and reflects light incident from a second substrate side. The reflective layer is covered with a passivation film on which a first electrode made of a transparent conductive material, such as ITO having the work function equivalent to a second electrode, is formed and connected to the TFT. The passivation film covering the reflective layer prevents the reflective surface of the reflective layer from deteriorating in reflection properties during a process for connecting the TFT and the first electrode. Further, the first and second electrodes having similar characteristics can symmetrically AC drive the liquid crystal layer.
Abstract:
A liquid crystal display device comprising: a switching element that has a drain electrode and that is arranged on a substrate; a first insulating film that covers the switching element and that has a first opening on the drain electrode; a first etching stopper electrode that is formed in the first opening and that is connected to the drain electrode; a common electrode that is arranged on the first insulating film; a second insulating film that covers the first etching stopper electrode and the common electrode, and that has a second opening on the first etching stopper electrode; and a pixel electrode that is connected through the second opening to the first etching stopper electrode and that extends onto the second insulating film so as to face the common electrode.
Abstract:
A paper feed apparatus of the present invention includes a pick mechanism for successively taking out, by use of a pick roller 1, a plurality of sheets of paper stacked on a chute from the bottom side thereof, leading ends of the sheets being aligned by means of a stopper block 2 in a state in which the sheets are stacked on the chute. Moreover, the apparatus includes a roller guide 11 and an abutment guide 12. When the roller guide 11 is raised to a paper setting position in a direction away from the pick roller 1, the roller guide 11 raises the leading ends of the sheets stacked on the chute to thereby prevent contact between the sheets and the pick roller 1. The abutment guide 12 aligns the leading ends of the sheets when the roller guide 11 is raised. When a pick operation is started, prior to retraction of the roller guide 11, sheet pressing operation of a pick arm 4 and retraction of the abutment guide 12 are performed, and then the sheets are taken out through a clearance formed between the distal end of the stopper block 2 and the pick roller 1.
Abstract:
On a first substrate, a TFT which is a switching element is provided for each pixel, and above an insulating film covering this TFT, a reflective layer which is insulated from the TFT and which reflects light entering a second substrate and transmitting through a second electrode made of ITO is formed. Further, a first electrode having a work function similar to that of the second electrode and made of a transparent conductive material such as ITO is formed closer to a liquid crystal layer than the reflective layer, and this first electrode is connected with the TFT. With this configuration, the liquid crystal layer can be symmetrically AC driven by the first and second electrodes. A reliable connection between the first electrode and the TFT is provided through a connection metal layer made of a refractory metal.
Abstract:
A display device may include a display unit, a touch detecting unit that detects a touch on the display unit, a touch-position detecting unit that detects a touch position on the touch detecting unit and outputs coordinate data of the position, a display control unit that causes the display unit to provide dual view display of an image and display a menu image, a menu generating unit that generates first and second top menus, and a control unit that performs control to display the top menus in different positions on a screen of the display unit, to determine, on the basis of the coordinate data from the touch-position detecting unit, which of the top menus has been touched, to enable operations on one of the top menus that has been touched, and to disable operations on the other one of the top menus.
Abstract:
An ECU executes a program that includes the steps of setting a line pressure to a line pressure (1) that is appropriate for improving fuel efficiency, if an automatic transmission is not shifting, and a deceleration slip control for a lock-up clutch is not being executed; setting the line pressure to a line pressure (2) that is equal to or lower than a line pressure (3) that is appropriate when the automatic transmission is shifting, if it is determined that the automatic transmission is not shifting, and the deceleration slip control is being executed; and setting the line pressure to the line pressure (3), if it is determined that the automatic transmission is shifting. The line pressure (1) is lower than the line pressure (2). The line pressure (2) is equal to or lower than the line pressure (3).