Abstract:
An aminostyryl compound represented by Formula 1: The organic light emitting device using the aminostyryl compound exhibits low driving voltage and improved brightness, efficiency, and color purity.
Abstract:
An organic light emitting element and an organic light emitting device including the same is provided. At least one p-type or n-type overdoping layer is formed between two light emitting members forming a p-n junction in the organic light emitting element.
Abstract:
Provided is a biosensor that uses multiple organic light emitting diodes (OLEDs) as light sources. The biosensor includes a transparent substrate, a plurality of OLEDs which are disposed on a first surface of the transparent substrate and are electrically separated from each other, and a photo detector above the transparent substrate that receives light emitted from a specimen disposed on the transparent substrate, wherein the specimen is disposed on a region of a second surface which is a surface opposite to the first surface of the transparent substrate.
Abstract:
A semiconductor memory device includes a device isolation layer formed in a semiconductor substrate to define a plurality of active regions. Floating gates are disposed on the active regions. A control gate line overlaps top surfaces of the floating gates and crosses over the active regions. The control gate line has an extending portion disposed in a gap between adjacent floating gates and overlapping sidewalls of the adjacent floating gates. First spacers are disposed on the sidewalls of the adjacent floating gates. Each of the first spacers extends along a sidewall of the active region and along a sidewall of the device isolation layer. Second spacers are disposed between outer sidewalls of the first spacers and the extending portion and are disposed above the device isolation layer. An electronic device including a semiconductor memory device and a method of fabricating a semiconductor memory device are also disclosed.
Abstract:
A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
Abstract:
Provided is an optical disk apparatus in which an interlocking slider engaged with a main slider directly drive an eject lever and a boss for performing a disk chucking operation. The optical disk apparatus includes a housing having a slot to receive a disk, a main unit having a turn table to rotate the disk, the main slider configured to move in first and second directions corresponding to insertion and ejection of the disk, the eject lever configured to eject the disk inserted into the housing through the slot, and the interlocking slider.
Abstract:
A semiconductor nanocrystal, wherein the semiconductor nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects
Abstract:
Provided is a white organic light emitting device (OLED). The white OLED includes a double cavity structure in which a first region and a second region are defined based on a transparent common electrode using a top emission method. A green phosphorescence or fluorescence emission layer is disposed in the first region, a blue fluorescence emission layer is disposed in the second region, a red emission layer is optionally disposed in the first region or the second region, and an optical path control layer (OPCL) for widening color gamut is disposed in a region in which green light and blue light are emitted so that color coordinates are not greatly changed due to a change in thickness of the OPCL and white light having good quality is obtained.
Abstract:
An organic light emitting device (OLED) having increased light output efficiency and a wide color gamut, and a color display apparatus employing the OLED, includes: a substrate; a reflective electrode formed on the substrate; an organic light emitting layer formed on the reflective electrode; a semi-transparent or transparent electrode formed on the organic light emitting layer; and an optical path control layer formed on the semi-transparent or transparent electrode and formed of a light transmitting material. In the OLED, resonators are formed between the reflective electrode and the semi-transparent or transparent electrode, between the reflective electrode and the top surface of the optical path control layer, and between the top surface of the semi-transparent or transparent electrode and the top surface of the optical path control layer, respectively, therefore, as an optical mode output to the exterior of the optical path control layer, at least two multiple resonances are generated.
Abstract:
Provided is an organic tunneling p-n junction diode. The organic tunneling p-n junction diode includes an n-doped organic semiconductor layer and a p-doped organic semiconductor layer which are doped with extrinsic impurities. When either a reverse-bias voltage or a forward-bias voltage is applied, the organic tunneling p-n junction diode is turned off within a predetermined voltage range and has exponential voltage-current characteristics outside the predetermined voltage range.