Abstract:
The present invention provides a laminate including an anti-reflection film and a protective film that is stuck on the surface of the anti-reflection film. The protective film is excellent in temporary adhesiveness and can be removed to leave few adhesives. The laminate of the present invention directs to a laminate comprising an anti-reflection film; and a protective film stuck on the anti-reflection film, wherein the surface of the anti-reflection film has multiple protrusions, the distance between two tips of adjacent protrusions being equal to or smaller than visible light wavelength, and the protective film includes a support film and an adhesive layer that is in contact with the anti-reflection film, the adhesive layer including an adhesive that contains a polymer having an olefin structure as a monomer unit.
Abstract:
A display device has a pixel that is defined by a plurality of sub-pixels. The sub-pixels include a red sub-pixel representing red, a green sub-pixel representing green, a blue sub-pixel representing blue and a yellow sub-pixel representing yellow. When the pixel represents white, the luminance of the red sub-pixel is lower than its luminance corresponding to the highest gray scale level. In one embodiment, when the pixel represents white, the luminance of the red sub-pixel is preferably in the range of 25% to 96% of its luminance corresponding to the highest gray scale level. Also, the color temperature of white represented by the pixel is preferably higher than 4200 K, more preferably higher than 5000 K.
Abstract:
A liquid crystal display device comprises plural picture elements including a first picture element and a second picture element; plural switching elements; and plural scanning lines. The plural switching elements include a first switching element electrically connected to the first picture element and a second switching element electrically connected to the second picture element. The plural scanning lines include a first scanning line electrically connected to the first switching element and a second scanning line electrically connected to the second switching element. The second scanning line is located between at least part of the first picture element and the first scanning line. The first scanning line is located between at least part of the second picture element and the second scanning line.
Abstract:
A mold includes an anodized porous alumina layer over its surface. The anodized porous alumina layer has a plurality of first and second recessed portions. The plurality of second recessed portions have a two-dimensional size of not less than 190 nm and not more than 50 μm when viewed in a direction normal to the mold surface and have a plurality of minute recessed portions over its inner surface. The plurality of minute recessed portions have a two-dimensional size of not less than 10 nm and not more than 200 nm; and have a two-dimensional size of not less than 10 nm and not more than 200 nm. The plurality of first recessed portions are provided between the plurality of second recessed portions. The average value of the two-dimensional size of the plurality of second recessed portions is greater than that of the plurality of first recessed portions.
Abstract:
Disclosed are: an optical film which has a moth eye structure; a method for producing the optical film; and a method for controlling the optical characteristics of the optical film. An embodiment discloses an optical film having a moth eye structure that includes a plurality of projections, wherein the plurality of projections include a plurality of slanted projections that are inclined to a film surface and the plurality of slanted projections are inclined in a generally same direction when the film surface is viewed in plan. Also disclosed is a method for producing an optical film having a moth eye structure, including applying a physical force to the moth eye structure. Further specifically disclosed is a method for controlling the optical characteristics of an optical film having a moth eye structure that includes a plurality of projections, the method including applying a physical force to the moth eye structure.
Abstract:
An antireflection film is provided in which a light scattering property is suppressed. In at least one example embodiment, the antireflection film includes, on a surface thereof, a moth-eye structure including a plurality of convex portions such that a width between vertices of adjacent convex portions is no greater than a wavelength of visible light. In at least one example embodiment of this antireflection film, the moth-eye structure does not include a sticking structure formed when tip end portions of the convex portions are joined to each other.
Abstract:
Realizes a structure for a transreflective liquid crystal display device in which one pixel is defined by four or more picture elements, the structure providing a high aperture ratio and being suitable for display for which the transmission mode is prioritized. A liquid crystal display device according to the present invention is a transreflective liquid crystal display device, comprising a plurality of picture elements including a first picture element, a second picture element, a third picture element and a fourth picture element for displaying different colors from one another; in which each of the plurality of picture elements includes a transmission area for providing display in a transmission mode and a reflection area for providing display in a reflection mode. Each picture element includes a mesh portion shaped to be meshable with an adjacent picture element; and the reflection area of each picture element is located in the mesh portion.
Abstract:
A method is disclosed for efficiently producing a nanoimprint film with high-accurately formed nanostructures even if a base on which the nanoimprint film is formed is capable of absorbing UV light. The production method of at least one embodiment of the present invention is a production method of a nanoimprint film formed on a base, the nanoimprint film having a surface with nanosized protrusions and recesses formed thereon. In at least one embodiment, the production method includes a first step of applying a UV-curable resin on a base containing a UV-absorbing component to form a film; a second step of irradiating the film with UV light from a top-side surface of the film to form a semi-cured film; a third step of imprinting nanosized protrusions and recesses on the semi-cured film to form a film having a surface with protrusions and recesses formed thereon; and a fourth step of curing the film with protrusions and recesses to form a nanoimprint film.
Abstract:
A liquid crystal display device of the present invention includes a liquid crystal display panel, and a light diffusing layer which has first and second major surfaces and which is arranged such that the first major surface opposes a viewer side surface of the liquid crystal display panel. The light diffusing layer includes a first region formed of a first substance which has a first refractive index N1 and a plurality of second regions formed of a second substance which has a second refractive index N2 (
Abstract:
A liquid crystal display device includes a liquid crystal display panel having a pixel defined by at least three sub-pixels including a blue sub-pixel, a backlight which emits, toward the liquid crystal display panel, light that brings a color temperature to a predetermined level when the pixel displays white, and a color tone correction circuit which corrects a color tone of a color displayed by the pixel. When the pixel displays a color containing at least one predetermined color component that is other than a white component and a blue component, the color tone correction circuit performs a correction to set a luminance of the blue sub-pixel lower than an original luminance.