Abstract:
The laminate of an embodiment is a laminate including an antireflection film and a protection film bonded onto the antireflection film, wherein the surface of the antireflection film includes a plurality of protrusions; the protection film includes a supporting film and an adhesive layer; the adhesive layer includes an adhesive agent, a copolymer, and a carboxyl group-containing monomer; the weight average molecular weight of the copolymer is 1000000 or more and 2000000 or less; the copolymer includes the (meth)acrylic acid alkyl ester with the alkyl group having 4 or less carbon atoms in the largest weight proportion among the monomer components; the acid number of the copolymer is 16 mg KOH/g or more and 120 mg KOH/g or less; and the mixing amount of the epoxy cross-linking agent in relation to 100 parts by weight of the copolymer is 1.5 parts by weight or more.
Abstract:
Disclosed are: an optical film which has a moth eye structure; a method for producing the optical film; and a method for controlling the optical characteristics of the optical film. An embodiment discloses an optical film having a moth eye structure that includes a plurality of projections, wherein the plurality of projections include a plurality of slanted projections that are inclined to a film surface and the plurality of slanted projections are inclined in a generally same direction when the film surface is viewed in plan. Also disclosed is a method for producing an optical film having a moth eye structure, including applying a physical force to the moth eye structure. Further specifically disclosed is a method for controlling the optical characteristics of an optical film having a moth eye structure that includes a plurality of projections, the method including applying a physical force to the moth eye structure.
Abstract:
An antireflection film is provided in which a light scattering property is suppressed. The antireflection film includes, on a surface thereof, a moth-eye structure including a plurality of convex portions such that a width between vertices of adjacent convex portions is no greater than a wavelength of visible light.
Abstract:
The present invention provides an anti-reflective film that prevents wavelength dispersion from being applied to light transmitted through an anti-reflective film. The present invention is an anti-reflective film, which reduces reflection of visible light on a surface of a substrate by being mounted on the substrate, has a wavelength dispersion structure for applying first wavelength dispersion to visible light transmitting through the anti-reflective film, and contains a wavelength dispersion material for applying second wavelength dispersion to the visible light transmitting through the anti-reflective film, wherein visible light transmitted through the anti-reflective film has flat transmission wavelength dispersion in a visible light region.
Abstract:
Provided is a structure with an observation port. The structure with the observation port is provided with the observation port and an internal structure. The internal structure is located to the backside of the observation port and has a third reflection preventing film. The first reflection preventing film is a film that reduces reflected light by using light interference. Each of the second and third reflection preventing films has a surface comprising a plurality of convex portions, a distance between apexes of each adjacent two of which does not exceed the visible light wavelengths. Light obtained by combining light reflected by the surface of the first reflection preventing film, light reflected by the surface of the second reflection preventing film, and light reflected by the surface of the third reflection preventing film has a flat wavelength dispersion within the visible light range.
Abstract:
A roller nanoimprint apparatus is disclosed which is capable of preventing a workpiece film with nanostructures having been transferred from the mold roller from being uneven in thickness and allowing easy replacement of the mold roller. At least one embodiment of the present invention is directed to a roller nanoimprint apparatus including a mold roller and continuously transferring nanosized protrusions to a surface of a workpiece film by rotating the mold roller, wherein the mold roller is a cylindrical body having an outer circumference surface with nanosized recesses formed thereon, the roller nanoimprint apparatus further includes a fluid container having an elastic film inflatable by injecting fluid into the container, the fluid container being arranged in a region defined by an inner circumference surface of the mold roller, the mold roller is mounted or demounted when the elastic film is shrunken, and the mold roller is supported from the inside when the elastic film is inflated.
Abstract:
A method of fabricating a motheye mold according to the present invention includes the steps of: (a) anodizing a surface of an aluminum film (10a) via an electrode (32a) that is in contact with the surface, thereby forming a porous alumina layer which has a plurality of very small recessed portions; (b) after step (a), allowing the porous alumina layer to be in contact with an etchant, thereby enlarging the very small recessed portions of the porous alumina layer; and (c) after step (b), further anodizing the surface to grow the plurality of very small recessed portions. The aluminum film is made of aluminum with a purity of 99.99 mass % or higher. The electrode includes a first electrode portion (32a1) which is made of aluminum with a purity of 99.50 mass % or lower and a second electrode portion (32a2) which is made of aluminum with a higher purity than the aluminum of the first electrode portion and which is interposed between the surface and the first electrode portion. Step (a) and step (c) are performed with the second electrode portion being in contact with the surface in an electrolytic solution. According to the present invention, a method of efficiently anodizing an aluminum film formed over a large surface substrate and an electrode structure for use in the method.
Abstract:
The present invention provides a display panel with a flat plate in which a member partially provided with a light blocking part is disposed in front of a display panel, and a curable resin therebetween is sufficiently cured even in an area behind the light blocking part. The display panel with a flat plate of the present invention includes: a flat plate provided with a light passing part and a light blocking part; a display panel; and an adhesive layer between the flat plate and the display panel, the adhesive layer being a cured resin layer obtainable by polymerization involving at least one reactive component selected from the group consisting of a (meth)acrylate oligomer, a bicyclic ring-containing (meth)acrylate monomer, and a hydroxyl group-containing (meth)acrylate monomer, a peroxide component, and a primer as reaction materials.
Abstract:
A display device in which an image with a wide color reproduction range and bright red can be displayed is provided. The display device is a display device such as, for example, a liquid crystal display device, a cathode ray tube, an organic electroluminescent display device, a plasma display panel, and a field emission display. The display device includes a display surface including a pixel having red, green, blue, and yellow sub-pixels, wherein the red sub-pixel preferably has the largest aperture area.
Abstract:
The present invention provides a display panel equipped with a front plate and a display device, in each of which streak unevenness is sufficiently resolved in the periphery of a display area. The display panel equipped with a front plate of the present invention comprises: a display panel; a front plate; and a cured resin composition layer disposed between the display panel and the front plate, wherein the cured resin composition layer has a loss tangent of 2 or less at 0 to 70° C.