Abstract:
A method for fabricating a device isolation structure of a semiconductor device includes the steps of forming a pad oxide layer and a pad nitride layer over a semiconductor substrate including a cell region and a dummy region, etching a portion of the pad nitride layer, the pad oxide layer and the semiconductor substrate to form a trench, forming a sidewall oxide layer over the sidewalls of the trench; removing the sidewall oxide layer in the dummy region, forming a silicon nitride layer over the sidewalls of the sidewall oxide layer both in the cell region and in the dummy region, filling the trench with an insulating layer, polishing the insulating layer to expose the pad nitride layer, and removing the pad nitride layer.
Abstract:
Provided is a magnetic tunneling junction device including a fixed magnetic structure; a free magnetic structure; and a tunnel barrier between the fixed magnetic structure and the free magnetic structure, at least one of the fixed magnetic structure and the free magnetic structure including a perpendicular magnetization preserving layer, a magnetic layer between the perpendicular magnetization preserving layer and the tunnel barrier, and a perpendicular magnetization inducing layer between the perpendicular magnetization preserving layer and the magnetic layer.
Abstract:
An apparatus to provide Augmented Reality (AR) integrated information, includes an image acquiring unit to acquire an image of AR code, and a data processing unit to analyze the AR code to produce AR data, extract an element associated with a category from the AR data, generate a search term based on the extraction and display the AR data and/or search data.
Abstract:
An example embodiment relates to a method of forming a pattern structure, including forming an object layer on a substrate, and forming a hard mask on the object layer. A plasma reactive etching process is performed on the object layer using an etching gas including a fluorine containing gas and ammonia (NH3) gas together with oxygen gas to form a pattern. The oxygen gas is used for suppressing the removal of the hard mask during the etching process.
Abstract:
Methods and apparatus to provide clock resynchronization in communication networks are disclosed. An example method of clock resynchronization disclosed herein comprises determining a vote based on adjacent samples occurring within a single bit interval in a sampled data stream, wherein the vote comprises an early vote when the adjacent samples indicate a sampling phase of a sampling clock is early relative to a center position in the bit interval and wherein the vote comprises a late vote when adjacent samples indicate the sampling phase is late relative to the center position, tracking a running difference between a number of early votes and a number of late votes in a plurality of votes corresponding to a plurality of adjacent samples, and adjusting the sampling phase when the running difference reaches a threshold.
Abstract:
The present invention relates to a liquid crystal display panel that is adaptive for preventing rubbing defects and the fabricating method thereof. A liquid crystal display panel according to an embodiment of the present invention includes a black matrix on a substrate; and color filters formed at pixel areas which are defined by the black matrix, wherein a distance between the adjacent color filters is between about 0.1 μm and about 5 μm.
Abstract:
A bidirectional repeater and data multiplexer for serial data has A-side 12C port devices A1-A4 coupled to comparators 302-308 and pull-downs to ground 316-322. Comparator outputs are coupled responsive to select lines S1-S4 of N:1 Select 310 to terminal A1 of bidirectional control 210 to control pull-down to non-zero low voltage Vp 206 at B-side device B. An inverting comparator 208 coupled to terminal B1 of bidirectional control 210 responds to input threshold voltage Vt less than low voltage Vp, to prevent data lockup due to data flowback to devices A1-A4. Output data from comparator 208 is coupled responsive to select lines S1-S4 of 1:N Select 312 to control pull-downs 316-322. This selectively repeats routing of device A1-A4 data to device B. Data from device B is selectively routed to pull-downs of devices A1-A4.
Abstract:
A method for fabricating a device isolation structure of a semiconductor device includes the steps of forming a pad oxide layer and a pad nitride layer over a semiconductor substrate including a cell region and a dummy region, etching a portion of the pad nitride layer, the pad oxide layer and the semiconductor substrate to form a trench, forming a sidewall oxide layer over the sidewalls of the trench; removing the sidewall oxide layer in the dummy region, forming a silicon nitride layer over the sidewalls of the sidewall oxide layer both in the cell region and in the dummy region, filling the trench with an insulating layer, polishing the insulating layer to expose the pad nitride layer, and removing the pad nitride layer.
Abstract:
An electric device having a first body unit and a second body unit connected through a hinge unit is provided. A Flexible Printed Circuit (FPC) having coil portions wrappable around the shafts of the hinge unit is also provided so that when the second body unit pivots or rotates in relation to the first body unit, the FPC's length is automatically adjusted by way of the coil portions coiling and uncoiling about the shafts.
Abstract:
A forced air heat exhaust type of burn-in test apparatus for packages: A first air supply duct provides air to the burn-in chamber and a second air supply duct provides air to supply tubes that direst air into the test sockets that hold the packages. The test sockets have a structure that allows air ventilation of the conductive balls. Accordingly, the apparatus can control the temperature around the packages as well as the temperature in the burn-in chamber, thus preventing conductive ball-melting.