Abstract:
A blue electroluminescent polymer having a phenoxazine-based unit in a polyarylene backbone and an organic electroluminescent device using the polymer. The organic electroluminescent device has improved luminous efficiency and color purity.
Abstract:
The present invention provides an aromatic heterocyclic compound represented by Formula 1 below, an organic light-emitting diode including an organic layer comprising the aromatic heterocyclic compound, and a method of manufacturing the organic light-emitting diode: wherein A, Ar1, Ar2, n, m, and k are as described in the detailed description of the present invention.
Abstract:
An aromatic compound represented by Formula 1 below and an organic light-emitting diode including the same: M1-(B)n-M2 (1) The aromatic compound has excellent thermal stability and emission characteristics. Thus, the organic light-emitting diode employing the aromatic compound can exhibit a low driving voltage, high efficiency, and high brightness.
Abstract:
A cyclopentaphenanthrene-based compound is easy to prepare and excellent in solubility, color purity, color stability, and thermal stability. The cyclopentaphenanthrene-based compound is useful as a material for forming an organic layer, in particular, an emitting layer, in an organoelectroluminescent device, and as an organic dye or an electronic material such as a nonlinear optical material.
Abstract:
The present invention provides a liquid crystal display (“LCD”), a method of manufacturing the same, and a method of repairing the same capable of obtaining a wide viewing angle and improving a success ratio of repair. The LCD includes a gate line, a first data line intersecting the gate line, a thin film transistor (“TFT”) connected with the gate line and the first data line, a pixel electrode connected with the TFT, a first conductive pattern partially overlapping with a first end of the pixel electrode, a second conductive pattern partially overlapping with a second end of the pixel electrode, and a storage capacitor, wherein at least one of the first conductive pattern and the second conductive pattern partially overlaps with the first data line adjacent to the first end of the pixel electrode and a second data line adjacent to the second end of the pixel electrode, respectively.
Abstract:
Provided is an organic electroluminescent device including an organic layer interposed between a pair of electrodes, the organic layer including a layer formed of a titanium oxide derivative or a mixture layer containing a titanium oxide derivative. The organic electroluminescent device has higher luminescent efficiency, a longer lifetime and a lower operating voltage than a conventional organic electroluminescent device, and can be easily manufactured.
Abstract:
A compound represented by Formula 1 and an organic light emitting device including the same: where Ar is a substituted or unsubstituted C6-C26 aryl group; X is O, S, R1 and R2 are hydrogen, a halogen, a C1-C12 alkyl group, a C6-C26 aryl group, or a substituted group thereof; R3, R4, R5, R6, R7 and R8 are each independently hydrogen or a substituted or unsubstituted C1-C12 alkyl group; R9 through R22 are each independently hydrogen, a C1-C30 alkyl group, a C1-C30 alkoxy group, a C6-C30 aryl group, a C6-C30 arylalkyl group, a C6-C30 aryloxy group, a C5-C30 heteroaryl group, a C5-C30 heteroarylalkyl group, a C5-C30 heteroaryloxy group, a C5-C20 cycloalkyl group, a C5-C30 heterocycloalkyl group, or a substituted group thereof. An organic light emitting device using the compound has low operating voltage, high color purity, and high efficiency.
Abstract:
A shift register includes a plurality of stages to output a plurality of output signals, in sequence. Each of the stages includes a driving part and a discharging part. The driving part outputs an output signal of a present stage based on one of a start signal and an output signal of a previous stage, and a clock signal. The discharging part discharges the output signal of the present stage. The discharging part includes a discharge transistor and an auxiliary transistor. The discharge transistor has a gate electrode receiving an output signal of a next stage. The auxiliary transistor has a gate electrode receiving the output signal of the next stage. The auxiliary transistor is electrically connected in series to the discharge transistor. Therefore, the chance of a malfunction is decreased, and image display quality of the display device is improved.
Abstract:
A method of patterning a conductive polymer, an organic light emitting device (OLED) manufactured using the method of patterning a conductive polymer, and a method of manufacturing the OLED are provided. The method of patterning a conductive polymer includes forming a conductive polymer layer on a substrate, aligning a shadow mask above the conductive polymer layer, and forming a conductive polymer pattern area and an insulating area in the conductive polymer layer by radiating charged particle beams through the shadow mask.