Abstract:
A method is provided for fabricating a thin-film transistor (TFT). The method includes forming a semiconductor layer over a gate insulator that covers a gate electrode, and depositing an insulator layer over the semiconductor layer, as well as etching the insulator layer to form a patterned etch-stop without losing the gate insulator. The method also includes forming a source electrode and a drain electrode over the semiconductor layer and the patterned etch-stop. The method further includes removing a portion of the semiconductor layer beyond the source electrode and the drain electrode such that a remaining portion of the semiconductor layer covers the gate insulator in a first overlapping area of the source electrode and the gate electrode and a second overlapping area of the drain electrode and gate electrode.
Abstract:
A liquid crystal display (LCD) includes an array of pixels over a thin film transistor (TFT) substrate. The TFT substrate includes a TFT that has a first metal layer to form a gate electrode and a second metal layer to form a source electrode and a drain electrode for each pixel. The LCD also includes an organic insulation layer disposed over the TFT substrate, where the organic insulator layer has trenches on a top surface. The LCD further includes a third metal layer disposed over the organic insulation layer in the trenches, the trenches having a trench depth at least equal to the thickness of the third metal layer. The LCD also includes a passivation layer over the third metal layer, and a pixel electrode for each pixel over the passivation layer. The LCD further includes a polymer layer over the pixel electrode, and liquid molecules on the polymer layer.
Abstract:
A system and device for driving high resolution monitors while reducing artifacts thereon. Utilization of Z-inversion polarity driving techniques to drive pixels in a display reduces power consumption of the display but tends to generate visible horizontal line artifacts caused by capacitances present between the pixels and data lines of the display. By introducing a physical shield between the pixel and data line elements, capacitance therebetween can be reduced, thus eliminating the cause of the horizontal line artifacts. The shield may be a common voltage line (Vcom) of the display.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have an array of pixels formed from thin-film transistor circuitry. The thin-film transistor circuitry may include thin-film layers of dielectric, semiconductor, and metal on a dielectric substrate. Test structures may be formed around the periphery of the substrate to facilitate testing of the thin-film circuitry during manufacturing. The test structures may include test pads that are coupled to the thin-film circuitry by test lines extending from the thin-film circuitry. Following testing, the outermost portions of the display and the test pads on these display portions may be removed by cutting the substrate along a substrate cut line. The test lines may be formed from parallel lines that are shorted together, semiconductor layers, multiple layers of conductive material, and other structures that resist corrosion along the cut line.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. The silicon transistors may be configured in a top gate arrangement. The oxide transistors may be configured in a top gate or a bottom gate arrangement. In one embodiment, source-drain contacts for the silicon and oxide transistors may be formed simultaneously. In another embodiment, the silicon and oxide thin-film transistor structures may be formed using at least three metal routing layers.
Abstract:
A display may have an active area with an array of pixels to display images. An inactive area in the display may be formed from an opening in the active area. The inactive area may be enclosed by the pixels in the active area. An inactive border may run along an edge of the inactive area. A grid of positive power supply lines may be used to supply power to the pixels. Initialization voltage lines may be used to distribute initialization voltages to the pixels for use during transistor threshold voltage compensation operations. The inactive border may be free of positive power supply lines and initialization voltages lines. Control signal lines and data lines may pass through the inactive border to supply control signals and data signals respectively to the pixels. The display may have thin-film transistor circuitry with multiple layers of data lines.
Abstract:
An electronic device may have a flexible display with portions that are bent along a bend axis. The display may have display circuitry such as an array of display pixels in an active area. Contact pads may be formed in an inactive area of the display. Signal lines may couple the display pixels to the contact pads. The signal lines may overlap the bend axis in the inactive area of the display. During fabrication, an etch stop may be formed on the display that overlaps the bend axis. The etch stop may prevent over etching of dielectric such as a buffer layer on a polymer flexible display substrate. A layer of polymer that serves as a neutral stress plane adjustment layer may be formed over the signal lines in the inactive area of the display. Upon bending, the neutral stress plane adjustment layer helps prevent stress in the signal lines.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. The silicon transistors may be configured in a top gate arrangement. The oxide transistors may be configured in a top gate or a bottom gate arrangement. In one embodiment, source-drain contacts for the silicon and oxide transistors may be formed simultaneously. In another embodiment, the silicon and oxide thin-film transistor structures may be formed using at least three metal routing layers.