Abstract:
The present invention concerns a method for purifying 2,3,3,3-tetrafluoro-1-propene (1234yf) from a first composition comprising 2,3,3,3-tetrafluoro-1-propene and at least one of the compounds chosen from the group consisting of 1,1-difluoroethane (152a), chloropentafluoroethane (115), and trans-1,3,3,3-tetrafluoro-1-propene (1234ze-E) said method comprising the steps consisting of: a) bringing said first composition into contact with at least one organic extractant in order to form a second composition; b) extractive distillation of said second composition in order to form (i) a third composition comprising said organic extractant and said at least one of the compounds chosen from the group consisting of 1,1-difluoroethane (152a) chloropentafluoroethane (115), and trans-1,3,3,3-tetrafluoro-1-propene (1234ze-E); and ii) a stream comprising 2,3,3,3-tetrafluoro-1-propene. The invention also concerns a method for producing and purifying 2,3,3,3-tetrafluoro-1-propene.
Abstract:
The invention relates to a process for producing 2,3,3,3-tetrafluoropropene performed using a starting composition, comprising the steps of placing the starting composition in contact with HF, in the presence of a catalyst, to produce a composition A comprising 2,3,3,3-tetrafluoropropene (1234yf), intermediate products B consisting of 2-chloro-3,3,3-trifluoropropene (1233xf), 1,1,1,2,2-pentafluoropropane (245cb), and side products C consisting of E-1-chloro-3,3,3-trifluoro-1-propene (1233zdE), trans-1,3,3,3-tetrafluoro-1-propene (1234zeE) and 1,1,1,3,3-pentafluoropropane (245fa); recovery of said composition A and purification thereof to form and recover a first stream comprising 2,3,3,3-tetrafluoropropene (1234yf) and one or more streams comprising 2-chloro-3,3,3-trifluoropropene (1233xf) and/or 1,1,1,2,2-pentafluoropropane (245cb); recycling into step a) of said one or more streams comprising 2-chloro-3,3,3-trifluoropropene (1233xf) and/or 1,1,1,2,2-pentafluoropropane (245cb).
Abstract:
The invention concerns a method for purifying and drying a hydrofluoroolefin stream comprising a hydrofluoroolefin, water and impurities composed of halogenated carbon compounds, characterised in that said stream is brought into contact with an adsorbent and in that the purification and the drying processes are carried out simultaneously in one and the same step, said hydrofluoroolefin being a compound of formula (I): CX1X2═CX3CX4X5X6 in which each Xi (i ranging from 1 to 6) represents, independently of one another, a hydrogen atom or a chlorine or fluorine atom, it being understood that at least one of the Xi's represents a fluorine atom.
Abstract:
The present invention relates to a composition comprising trifluoroethylene and 1,2,3,3,3-pentafluoropropene characterized that the weight ratio trifluoroethylene/1,2,3,3,3-pentafluoropropene is from 5/95 to 95/5.
Abstract:
An azeotropic or quasi-azeotropic composition including hydrogen fluoride, 3,3,3-trifluoro-2-chloropropene and one or more (hydro)halogen-carbon compounds including between 1 and 3 carbon atoms. Also an azeotropic or quasi-azeotropic composition including hydrogen fluoride, 3,3,3-trifluoro-2-chloropropene, and one or more compounds selected from among 1,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 2,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, E-3,3,3-trifluoro-1-chloropropene, trifluoropropyne, 1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluoropropene, 1,1,1,2,3-pentafluoropropene and 2-chloro,1,1,1,2-1 tetrafluoropropane.
Abstract:
Compositions containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene, that can be used in multiple fields of application. The composition can include from 45 to 90 mol % of 2,3,3,3-tetrafluoropropene and from 55 to 10 mol % of, 1,2-difluoroethylene. The composition can include from 55 to 80 mol % of 2,3,3,3-tetrafluoropropene and from 45 to 20 mol % of 1,2-difluoroethylene. The composition can include from 62 to 69 mol % of 2,3,3,3-tetrafluoropropene and from 38 to 31 mol % of 1,2-difluoroethylene at a temperature of between −30° C. and 55° C. and a pressure of between 1 and 15 bar.
Abstract:
The present invention concerns a method of producing at least one compound of formula (II): CF3—CX(Z)n—CHX(Z)n in which X represents, independently, a hydrogen, fluorine or chlorine atom, Z represents, independently, a hydrogen or fluorine atom, and n =0 or 1, from at least one compound of formula (I): CX(Y)2—CX(Y)m—CHmXY in which X and Y represent, independently, a hydrogen, fluorine or chlorine atom and m =0 or 1. The method comprises at least one step during which at least one compound of formula (I) reacts with HF in the gaseous phase in the presence of a fluorination catalyst in order to give at least one compound of formula (II), characterised in that the catalyst is made from chromium oxyfluoride containing at least nickel as the co-metal and at least one rare earth metal.
Abstract:
The present invention provides a process of catalytic fluorination in gas phase of product 1,1,1,2,3-pentachloropropane or/and 1,1,2,2,3-pentachloropropane into product 2,3,3,3-tetrafluoropropene in presence of a catalyst.
Abstract:
Compositions containing 1,1-difluoroethane and 3,3,3-trifluoropropene, that can be used in multiple fields of application. The composition may include from 25 to 65 mol % of 1,1-difluoroethane and from 75 to 35 mol % of 3,3,3-trifluoropropene at a temperature of between −25° C. and 25° C. and a pressure of between 1 and 6 bar. The composition may further include hydrogen fluoride. The composition may include from 20 to 55 mol % of HF, 30 to 40 mol % of 1,1-difluoroethane and 30 to 40 mol % of 3,3,3-trifluoropropene.
Abstract:
Compositions containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene, that can be used in multiple fields of application. The composition can include from 45 to 90 mol % of 2,3,3,3-tetrafluoropropene and from 55 to 10 mol % of, 1,2-difluoroethylene. The composition can include from 55 to 80 mol % of 2,3,3,3-tetrafluoropropene and from 45 to 20 mol % of 1,2-difluoroethylene. The composition can include from 62 to 69 mol % of 2,3,3,3-tetrafluoropropene and from 38 to 31 mol % of 1,2-difluoroethylene at a temperature of between −30° C. and 56° C. and a pressure of between 1 and 15 bar.