摘要:
A wireless transmit/receive units (WTRUs) receives a downlink transmission from a Node-B and decodes the downlink transmission. If the decoding is not successful, the WTRU sends a pre-defined burst signifying a negative acknowledgement (NACK) to the Node-B via a contention-based shared feedback channel. The pre-defined burst may be sent only once without requiring an acknowledgement. The Node-B calibrates a downlink transmit power so that the downlink transmission is transmitted to the WTRUs with a high likelihood. The Node-B may send a downlink transmission including multiple data streams processed using different modulation and coding schemes so that a WTRU having a high signal quality decodes all data streams while a WTRU having a low signal quality decodes less than all data streams. The Node-B sends a channel quality indicator (CQI) threshold so that each WTRU determines a data stream to report feedback based on the CQI threshold and a measured CQI.
摘要:
A method and apparatus for encoding channel quality indicator (CQI) and precoding control information (PCI) bits are disclosed. Each of the input bits, such as CQI bits and/or PCI bits, has a particular significance. The input bits are encoded with a linear block coding. The input bits are provided with an unequal error protection based on the significance of each input bit. The input bits may be duplicated based on the significance of each input bit and equal protection coding may be performed. A generator matrix for the encoding may be generated by elementary operation of conventional basis sequences to provide more protection to a most significant bit (MSB).
摘要:
In a wireless communication system including at least one wireless transmit/receive unit (WTRU) and at least one Node-B (NB), an activation or deactivation state is determined for each of a plurality of HARQ processes. A signal that includes the activation or deactivation state for each of the HARQ processes is transmitted to the WTRU. In response to receiving the signal, the WTRU activates or deactivates a particular HARQ process in accordance with the activation or deactivation state for each of the HARQ processes contained in the received signal.
摘要:
A plurality of communications is received. The communications are transmitted in a wireless code division multiple access format. A channel response for each received communication is estimated. A system response matrix is constructed using codes and the channel responses of the received communications. An objective matrix is produced using the system response matrix. The received communications are matched filtered to produce a first input. The first input is processed with an interference cancellation matrix to produce a first set of symbols of the received communications. The first set of produced symbols are processed with a feedback interference construction matrix to produce feedback interference. The feedback matrix added to an inverse of the interference cancellation matrix equals the objective matrix. The feedback interference is subtracted from a result of the match filtering to produce a next input. The next input is processed with the interference cancellation matrix to produce a next set symbols of the received communications.
摘要:
A method and system for generating a secret key from joint randomness shared by wireless transmit/receive units (WTRUs) are disclosed. A first WTRU and a second WTRU perform channel estimation to generate a sampled channel impulse response (CIR) on a channel between the first WTRU and the second WTRU. The first WTRU generates a set of bits from the sampled CIR and generates a secret key and a syndrome, (or parity bits), from the set of bits. The first WTRU sends the syndrome, (or parity bits), to the second WTRU. The second WTRU reconstructs the set of bits from the syndrome, (or parity bits), and its own sampled CIR, and generates the secret key from the reconstructed set of bits.
摘要:
A wireless communication method and apparatus for generating a scheduling grant based on a relative grant are disclosed. A wireless transmit/receive unit (WTRU) receives an absolute grant from a serving radio link set (RLS) and receives a relative grant from the serving RLS and at least one non-serving radio link (RL). The WTRU decodes enhanced dedicated channel (E-DCH) absolute grant channel (E-AGCH) signals to detect an absolute grant, and decodes E-DCH relative grant channel (E-RGCH) signals to detect at least one relative grant. The WTRU then calculates a serving grant based on the detected absolute grant and/or the relative grant(s). The relative grant may be detected by performing a hypothesis test on the E-RGCH signals. A multiple alternative hypothesis test is performed for detecting the E-RGCH signals from the serving RLS and a binary hypothesis test is performed for detecting the E-RGCH signals from the at least one non-serving RL.
摘要:
A protocol engine (PE) for processing data within a protocol stack in a wireless transmit/receive unit (WTRU) is disclosed. The protocol stack executes decision and control operations. The data processing and re-formatting which was performed in a conventional protocol stack is removed from the protocol stack and performed by the PE. The protocol stack issues a control word for processing data and the PE processes the data based on the control word. Preferably, the WTRU includes a shared memory and a second memory. The shared memory is used as a data block place holder to transfer the data amongst processing entities. For transmit processing, the PE retrieves source data from the second memory and processes the data while moving the data to the shared memory based on the control word. For receive processing, the PE retrieves received data from the shared memory and processes it while moving the data to the second memory.
摘要:
A receiver which suppresses inter-cluster multipath interference by processing an impulse channel response consisting of two multipath clusters, each cluster having groups of signals with multiple delays. In one embodiment, the receiver includes a single antenna and parallel-connected delay units used to align the groups of signals before being input into respective sliding window equalizers. The outputs of the equalizers are combined at chip level via a combiner which provides a single output. In another embodiment, a cluster multipath interference suppression (CMIS) circuit is incorporated into the receiver. The CMIS circuit includes a hard decision unit and a plurality of signal regeneration units to generate replicas of the multipath clusters. The replicas are subtracted from the respective outputs of the delay units and the results are input to the respective sliding window equalizers. In another embodiment, multiple antennas are used to receive and process the clusters.
摘要:
A Node-B/base station receiver comprises at least one antenna for receiving signals. Each finger of a pool of reconfigurable Rake fingers recovers a multipath component of a user and is assigned a code of the user, a code phase of the multipath component and an antenna of the at least one antenna. An antenna/Rake finger pool interface provides each finger of the Rake pool an output of the antenna assigned to that Rake finger. A combiner combines the recovered multipath components for a user to produce data of the user.
摘要:
Components and method are provided to efficiently process wireless communications data where prior knowledge of the specific format of the communication data is not available. A wireless transmit receive unit (WTRU) is configured for use in a wireless communication system where communication data for selected channels is transmitted in system time frames in formats selected from among a set of predefined formats. The WTRU has a receiver, a memory, a received chip rate processor (RCRP), a format detector and a de-interleaver. The RCRP is preferably configured to despread each wireless signal of spread data received in each time frame using a minimum spreading code or other appropriate key sequence and to store resultant despread data for each respective time frame in the memory. The format detector is preferably configured to determine the number of physical channels and the respective spreading factor for each physical channel for the wireless signal of spread data received in each time frame. The de-interleaver is preferably configured to de-interleave the stored data despread by the RCRP for each respective time frame into the number of physical channels determined by the format detector for the respective time frame.