Abstract:
A pixel in an image sensor can include a photodetector and a storage region disposed in one substrate, or a photodetector disposed in one substrate and a storage region in another substrate. A buried light shield is disposed between the photodetector and the storage region. A sense region, such as a floating diffusion, can be adjacent to the storage region, with the buried light shield disposed between the photodetector and the storage and sense regions. When the photodetector and the storage region are disposed in separate substrates, a vertical gate can be formed through the buried light shield and used to initiate the transfer of charge from the photodetector and the storage region. A transfer channel formed adjacent to, or around the vertical gate provides a channel for the charge to transfer from the photodetector to the storage region.
Abstract:
An image sensor can include pixels that are grouped into subsets of pixels, with each subset including three or more pixels. A method for asymmetrical high dynamic range imaging can include capturing an image of a subject scene using a single integration time for all of the pixels. In a subset of pixels, charge in N pixels is read out and summed together. N represents a number that is between two and one less than a total number of pixels in the subset. Un-summed charge is read out from one pixel in the subset. The un-summed charge and the summed charge are combined when producing a high dynamic range image.
Abstract:
In an embodiment, an ESD protection circuit may include a silicon-controlled rectifier (SCR) and a diode sharing a PN junction and forming a bi-directional ESD circuit. The single PN junction may reduce the capacitive load on the pin, which may allow the high speed circuit to meet its performance goals. In an embodiment, a floating P-well contact may be placed between two neighboring SCRs, to control triggering of the SCRs.
Abstract:
Various embodiments of ESD protection circuits and methods for operating the same are disclosed. In one embodiment, one or more driver circuits are protected by a first ESD protection circuit configured to activate and discharge current responsive to an ESD event. The driver circuit may include a pull-up transistor and a pull-down transistor each coupled to drive an output node. A second ESD protection circuit may be associated with and dedicated to the pull-up transistor in the driver circuit.
Abstract:
An image sensor can include pixels that are grouped into subsets of pixels, with each subset including three or more pixels. A method for asymmetrical high dynamic range imaging can include capturing an image of a subject scene using a single integration time for all of the pixels. In a subset of pixels, charge in N pixels is read out and summed together. N represents a number that is between two and one less than a total number of pixels in the subset. Un-summed charge is read out from one pixel in the subset. The un-summed charge and the summed charge are combined when producing a high dynamic range image.
Abstract:
A method of operating an image sensor. Charge accumulated in a photodiode during a first sub-exposure may be selectively stored in a storage node responsive to a first control signal. Charge accumulated in the photodiode during a first reset period may be selectively discarded responsive to a second control signal. Charge accumulated in the photodiode during a second sub-exposure may be selectively stored responsive to the first control signal. Charge stored in the storage node from the first and second sub-exposures may be transferred to a floating diffusion node responsive to a third control signal.