Abstract:
An apparatus includes a device, a comparison circuit, and a switch. The device includes a first terminal coupled to a first power supply signal, and a second terminal coupled to a ground reference. The comparison circuit is configured to compare a first voltage level on the first power supply signal to a second voltage level of a second power supply signal, and enable the device in response to a determination that the first voltage level is greater than the second voltage level. The switch circuit is configured to couple a power supply terminal of the comparison circuit to the first power supply signal in response to determining that the first voltage level is greater than the second voltage level, and to couple the power supply terminal to the second power supply signal in response to determining that the first voltage level is less than the second voltage level.
Abstract:
In an embodiment, an ESD protection circuit is provided in which diodes may be formed between N+ and P+ diffusions within an insulated semiconductor region and in which additional diodes may be formed between adjacent insulated regions of opposite conduction type as well. The diodes may be used in parallel to form an ESD protection circuit, which may have low on resistance and may sink high ESD current per unit area. To support the formation of the ESD protection circuit, each silicon region may have alternating N+ and P+ diffusions, and adjacent silicon regions may have N+ and P+ diffusions alternating in opposite locations. That is a perpendicular drawn between the N+ diffusions of one adjacent region may intersect P+ diffusions in the other adjacent region, and vice versa.
Abstract:
In an embodiment, an ESD protection circuit may include an STI-bound SCR and a gated SCR that may be electrically in parallel with the STI-bound SCR. The gated SCR may be perpendicular to the STI-bound SCR in a plane of the semiconductor substrate. In an embodiment, the gated SCR may trigger more quickly and turn on more quickly than the STI-bound SCR. The STI-bound SCR may form the main current path for an ESD event. A low capacitive load with rapid response to ESD events may thus be formed. In an embodiment, the anode of the two SCRs may be shared.
Abstract:
In an embodiment, an ESD protection circuit is provided in which diodes may be formed between N+ and P+ diffusions within an insulated semiconductor region and in which additional diodes may be formed between adjacent insulated regions of opposite conduction type as well. The diodes may be used in parallel to form an ESD protection circuit, which may have low on resistance and may sink high ESD current per unit area. To support the formation of the ESD protection circuit, each silicon region may have alternating N+ and P+ diffusions, and adjacent silicon regions may have N+ and P+ diffusions alternating in opposite locations. That is a perpendicular drawn between the N+ diffusions of one adjacent region may intersect P+ diffusions in the other adjacent region, and vice versa.
Abstract:
An apparatus includes a device, a comparison circuit, and a switch. The device includes a first terminal coupled to a first power supply signal, and a second terminal coupled to a ground reference. The comparison circuit is configured to compare a first voltage level on the first power supply signal to a second voltage level of a second power supply signal, and enable the device in response to a determination that the first voltage level is greater than the second voltage level. The switch circuit is configured to couple a power supply terminal of the comparison circuit to the first power supply signal in response to determining that the first voltage level is greater than the second voltage level, and to couple the power supply terminal to the second power supply signal in response to determining that the first voltage level is less than the second voltage level.
Abstract:
In an embodiment, an ESD protection circuit may include an STI-bound SCR and a gated SCR that may be electrically in parallel with the STI-bound SCR. The gated SCR may be perpendicular to the STI-bound SCR in a plane of the semiconductor substrate. In an embodiment, the gated SCR may trigger more quickly and turn on more quickly than the STI-bound SCR. The STI-bound SCR may form the main current path for an ESD event. A low capacitive load with rapid response to ESD events may thus be formed. In an embodiment, the anode of the two SCRs may be shared.
Abstract:
An output circuit included in an integrated circuit may employ multiple protection circuits to protect driver devices from damage during an electrostatic discharge event. One protection circuit clamps a signal port to a ground supply node upon detection of the electrostatic discharge event. Another protection circuit increases the voltage level of a control terminal to one of the driver devices during the electrostatic discharge event to reduce the voltage across the driver device and prevent damage to the device.
Abstract:
An output circuit included in an integrated circuit may employ multiple protection circuits to protect driver devices from damage during an electrostatic discharge event. One protection circuit clamps a signal port to a ground supply node upon detection of the electrostatic discharge event. Another protection circuit increases the voltage level of a control terminal to one of the driver devices during the electrostatic discharge event to reduce the voltage across the driver device and prevent damage to the device.
Abstract:
In an embodiment, an ESD protection circuit may include a silicon-controlled rectifier (SCR) and a diode sharing a PN junction and forming a bi-directional ESD circuit. The single PN junction may reduce the capacitive load on the pin, which may allow the high speed circuit to meet its performance goals. In an embodiment, a floating P-well contact may be placed between two neighboring SCRs, to control triggering of the SCRs.
Abstract:
In an embodiment, an ESD protection circuit may include a silicon-controlled rectifier (SCR) and a diode sharing a PN junction and forming a bi-directional ESD circuit. The single PN junction may reduce the capacitive load on the pin, which may allow the high speed circuit to meet its performance goals. In an embodiment, a floating P-well contact may be placed between two neighboring SCRs, to control triggering of the SCRs.