摘要:
Disclosed is a heat exchanger with flat tubes of two columns, including: a first header having a plurality of connecting grooves formed at a zigzag arrangement of two columns; a second header having a plurality of connecting grooves formed at the corresponding positions of the first header; and a plurality of flat tubes coupled to the plurality of connecting grooves of the first and second headers, for transferring refrigerant, wherein a first flat tubes at a first column are placed at fluid inlet side of air, and a second flat tubes at a second column are placed at ejecting outlet side of the air.
摘要:
A light emitting diode (LED) package includes: a main body mounted on a substrate; a light emitting diode that is mounted in the main body and emits light; and a lead frame exposed to allow the main body to be selectively top-mounted or side-mounted. A backlight unit includes: a light guide plate configured to allow a light source to proceed to a liquid crystal panel; a light emitting diode (LED) mounted in a main body mounted on a substrate and generating a light source; and an LED package having a lead frame exposed to allow the main body to be selectively top-mounted or side-mounted, and being mounted on the light guide plate.
摘要:
A donor substrate and a method of forming an organic semiconductor layer pattern using the donor substrate, whereby a donor substrate is formed using an organic semiconductor precursor having a thermally decomposable substituent through a wet process, the organic semiconductor precursor substrate in the donor substrate is transferred to a receptor substrate as a pattern and heated, and thus is changed into an organic semiconductor. As a result, an organic semiconductor layer pattern is obtained. The method can be used in the manufacture of various devices such as organic light emitting diode and organic thin film transistor. A low-molecular weight organic semiconductor layer pattern can be formed through a wet process, not through deposition. Thus, using the method, a flat display device can be conveniently manufactured at low cost.
摘要:
Provided are a conducting polymer composition and an electronic device including a layer formed using the conducting polymer composition. The conducting polymer composition contains: at least one compound selected from the group consisting of a siloxane compound of formula (1) below, a siloxane compound of formula (2) below, and a silane compound of formula (3) below; and a conducting polymer: where R1, R2, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, D, p, m, q, and r are the same as described in the detailed description of the invention. The electronic device including a layer formed using the conducting polymer composition has excellent electroluminescent characteristics and long lifetime.
摘要:
Provided are a blue electroluminescent (EL) polymer, a method of manufacturing the same, and an organic EL device including the polymer as a light emitting component, wherein an acridine derivative which can transport holes is introduced into a polymer backbone. The polymer is represented by Formula 1: The blue EL polymer has high color purity and color stability.
摘要:
An organic light emitting device (OLED) and a method of manufacturing the OLED. The OLED includes an anode, a cathode, a hole transport layer arranged between the anode and the cathode, a self-buffer layer arranged between the hole transport layer and the cathode, the self-buffer layer being adapted to protect the hole transport layer, the self-buffer layer being made of a first material and a light emitting layer arranged between the self-buffer layer and the cathode, the light emitting layer also being made of the first material.
摘要:
Provided are a composition for an electron transport layer which can be wet coated at a low temperature, an electron transport layer manufactured by coating and drying the composition, and an organic electroluminescent device including the electron transport layer. The organic electroluminescent device including the electron transport layer manufactured by wet coating the composition for an electron transport layer has an improved electron injection into a light emitting layer, thereby having an excellent light emitting efficiency, low operating voltage, and improved lifespan.
摘要:
An anti-sloshing moon pool structure is disclosed. The anti-sloshing moon pool structure of the present invention includes moon pool plates (112, 114 and 116), which are provided on a bow-side wall (401), a stern-side wall (403) and opposite sidewalls (405) of a moon pool (100), and a moon pool bottom block (130), which is provided on a bow-side lower edge (407) of the moon pool (100). The moon pool plates and the moon pool bottom block have protruding lengths within which they do not interfere with a maximum working area. Upper steps (112a, 112b, 114a, 114b, 116a, 116a-1, 116b and 116b-1) of the moon pool plates are disposed such that, when a ship is in a working position, they are lower than the free surface of the seawater, and lower steps (112c, 112d, 116c and 116d) of the moon pool plates are disposed such that, when the ship runs, they are lower than the free surface of the seawater.
摘要:
A donor substrate for forming a nano conductive film includes a base substrate and a transferring layer that is disposed on the base substrate. The transferring layer includes nano conductive particles and an organic semiconductor. A method of patterning a nano conductive film is provided, wherein a donor substrate in which nano conductive particles are dispersed by employing an organic semiconductor having low molecular weight as a binder is prepared, and nano conductive particles are patterned on a receptor substrate by employing the donor substrate. The method can be used to prepare patterns of various devices including a display device such as an OLED and an OTFT. Such a device can be prepared simply and economically by preparing a device comprising nano conductive particles and an organic semiconductor in wet basis even without deposition.
摘要:
A conducting polymer composition containing a siloxane material of Formula (1) below and a conducting polymer, and an electronic device including a layer formed using the conducting polymer composition: where A and a are the same as described in the detailed description of the invention. The electronic device including the layer formed using the conducting polymer composition has excellent electrical characteristics and long lifetime.