摘要:
In one embodiment, the invention is a method and apparatus for statistical path selection for at-speed testing. One embodiment of a method for selecting a path of an integrated circuit chip for at-speed testing includes computing a process coverage metric for a plurality of paths in the integrated circuit chip and selecting at least one path that maximizes the process coverage metric.
摘要:
The invention provides a method, system, and program product for determining a gradient of a parametric yield of an integrated circuit with respect to parameters of a delay of an edge of a timing graph of the circuit. A first aspect of the invention provides a method for determining a gradient of a parametric yield of an integrated circuit with respect to parameters of a delay of an edge of a timing graph of the circuit, the method comprising: conducting a statistical timing analysis; expressing a statistical circuit delay in terms of a delay of the edge; and computing a gradient of the statistical circuit delay with respect to parameters of the delay of the edge.
摘要:
In one embodiment, the invention is a moment-based characterization waveform for static timing analysis. One embodiment of a method for mapping a timing waveform associated with a gate of an integrated circuit to a characterization waveform includes using a processor to perform steps including: computing one or more moments of the timing waveform and defining the characterization waveform in accordance with the moments.
摘要:
In one embodiment, the invention is a method and apparatus for selecting voltage and frequency levels for use in at-speed testing. One embodiment of a method for selecting a set of test conditions with which to test an integrated circuit chip includes formulating a statistical optimization problem and obtaining a solution to the statistical optimization problem, where the solution is the set of test conditions.
摘要:
Disclosed is a method for enhanced efficiency and effectiveness in achieving closure of large, complex, high-performance digital integrated circuits. Circuit macros are re-optimized and re-tuned in the timing closure loop by means of a reformulated objective function that allows the optimizer to improve the slack of all signals rather than just the most critical one(s). The incentive to improve the timing of a sub-critical signal is a diminishing function of the criticality of the signal. Thus all signals are improved during the optimization, with the highest incentive to improve on the most critical signals, leading to faster and more effective overall timing closure.
摘要:
A method of efficient computation of gradients of a merit function of a system includes the steps of: specifying at least one parameter for which the gradients with respect to the at least one parameter are desired; specifying the merit function of interest in terms of observable measurements of the system; either solving or simulating the system to determine values of the measurements; expressing the gradients of the merit function as the gradient of a weighted sum of measurements; forming an appropriately configured adjoint system; and either solving or simulating the adjoint system to simultaneously determine the gradients of the merit function with respect to the at least one parameter by employing a single adjoint analysis. Preferably, the system may be modeled by a set of equations comprising at least one of the following: a nonlinear set of equations, a linear set of equations, a set of linear partial differential equations, a set of nonlinear partial differential equations, a set of linear differential algebraic equations or a set of nonlinear differential algebraic equations. Further, the system of interest may be a network and, preferably, may be an electrical circuit. Still further, elements of the adjoint network and excitations of the adjoint network are determined in order to obtain the gradients of the merit function by employing a single adjoint analysis. It is to be appreciated that, in a preferred embodiment, the gradients of merit function are computed for the purpose of optimization and the merit function may be either a Lagrangian merit function or an augmented Lagrangian merit function.
摘要:
A method for partitioning the columns of a matrix A. The method includes providing the matrix A in a memory device of a computer system. The matrix A has n columns and m rows, wherein n is an integer of at least 3, and wherein m is an integer of at least 1. The method further includes executing an algorithm by a processor of the computer system. Executing the algorithm includes partitioning the n columns of the matrix A into a closed group of p clusters, wherein p is a positive integer of at least 2 and less than n, wherein the partitioning includes an affinity-based merging of clusters of the matrix A, and wherein each cluster is a collection of one or more columns of A.
摘要:
A method and a system for conducting a static timing analysis on a circuit having a plurality of point-to-point delay constraints between two points of the circuit, in which two conservative and two optimistic user defined tests are derived for all types of the point-to-point delay constraints. The method shows that when a conservative test is performed without introducing any special tags, then it is found that the point-to-point constraint is satisfied. On the other hand, when the optimistic test fails without any special tags, it is determined that the point-to-point constraint is bound to fail if special tags are introduced, in which case, they are to be introduced only when an exact slack is desired. Finally, for anything in between, a real analysis with special tags or path tracing is required. Based on the topology of the graph, arrival time based tests may be tighter in some situations, while the required arrival time based tests, may be tighter in others.
摘要:
A method of critical path selection provides a set of paths that initially contains no paths. A timing tool is used to identify potential critical paths of an integrated circuit design. Each potential critical path is evaluated and the potential critical path is added to the set of paths if logic devices within the potential critical path are shared by less than a predetermined number of critical paths within the set of paths. This evaluating and adding process is repeated for each of the potential critical paths until all of the potential critical paths have been evaluated. Then, the potential critical paths within the set of paths can be output.
摘要:
The present invention is a system and method for statistical or probabilistic static timing analysis of digital circuits, taking into account statistical delay variations. The delay of each gate or wire is assumed to consist of a nominal portion, a correlated random portion that is parameterized by each of the sources of variation and an independent random portion. Arrival times and required arrival times are propagated as parameterized random variables while taking correlations into account. Both early mode and late mode timing are included; both combinational and sequential circuits are handled; static CMOS as well as dynamic logic families are accommodated. The timing analysis complexity is linear in the size of the graph and the number of sources of variation. The result is a timing report in which all timing quantities such as arrival times and slacks are reported as probability distributions in a parameterized form.