Abstract:
Technologies related to location graph adapted video games are generally described. In some examples, location graphs may be generated for received environment inputs, such as received three dimensional (3D) models of environments. Video games may be adapted to generated location graphs, such as by placing video game content at nodes of location graphs. Video game and/or user parameters may be accommodated when adapting video games to location graphs.
Abstract:
Technologies are generally described to redirect data from application sandboxes to datacenters. In some examples, an application operating in an application sandbox may exchange data with an application data store, such as a file or a directory, also located in the sandbox. The data store may then exchange data with a datacenter at a particular geographic locale over a network connection established by a sandbox data servicer module. The network connection may be periodically updated to connect the data store with different datacenters at different geographic locales based on geographic information associated with the application, a device on which the application executes, the datacenters, and/or the exchanged data.
Abstract:
Technologies are generally described for a system to process a collection of video recordings of a scene to extract and localize audio sources for the audio data. According to some examples, video recordings captured by mobile devices from different perspectives may be uploaded to a central database. Video segments capturing an overlapping portion of the scene at an overlapping time may be identified, and a relative location of each of the video capturing devices may be determined. Audio data for the video segments may be indexed with a sub-frame time reference and relative locations as a function of overlapping time. Using the indices that include the sub-frame time references and relative locations, audio sources for the audio data may be extracted and localized. The extracted audio sources may be transcribed and indexed to enable searching, and may be added back to each video recording as a separate audio channel.
Abstract:
The present technology provides an illustrative apparatus for recycling electric arc furnace (EAF) dust and method of use related to the same. The apparatus has a heat controlling region coupled to a separation volume and includes at least one magnet and a cooling region. The heating controlling region operates at a temperature sufficient to transform at least some of the EAF dust into a mixture of gaseous zinc and one or more additional metals. The magnet separates the iron-rich material from the mixture of gaseous zinc and one or more additional metals and the cooling region condenses the gaseous zinc.
Abstract:
Technologies are generally described for detecting transcoding and adjusting visual content for optimal display on user devices. A content provider may transmit a sample of a visual content to a user device over a service provider network, and may monitor the quality of the sample that the user device receives. The service provider may apply transcoding to the sample during the transmission causing the quality of the sample to be degraded. The content provider may receive a sample as rendered from the user device and may compare the sample as rendered to the visual content to identify a transcoding applied by the service provider network. The content provider may the transcoding to the visual content and may transmit visual content that is transcoded for optimal display over the service provider network to the user device.
Abstract:
Technologies are generally described for providing instructional media for assembly of a product from multiple components. In some examples, a standalone or web-based application for assisting with assembly of items may be informed of the state of the ongoing unpacking and/or assembly through optically, wirelessly, or comparably readable tags associated with the individual components of a disassembled item. Based on received data on state of assembly and which parts a user is accessing, the application may select appropriate instructional media, including detection of when assembly has gone wrong in order to coach the user through the assembly process and/or corrections.
Abstract:
Technologies are generally described to implement intrusion detection based on smart power background. In some examples, upon detection of an attempt to access a resource, a power line ambiance may be determined at a location of a device on which the attempt to access the resource is executed. The power line ambiance may be based on a connection of the device and/or one or more other devices at the location to a power line. The captured/received power profiles may identify device signatures enabling generation of a digest of the location. An intrusion detection system (IDS), may receive the digest of the location and compare the digest to previous digests associated with an authorized client of the resource to evaluate an authenticity of the attempt. If the authenticity of the attempt is suspicious, the IDS may elevate security by employing one or more verification levels and/or one or more authentication techniques.
Abstract:
Technologies are described herein to use snapshot backups for licensing. Some example technologies may access a snapshot backup that is taken during an execution of a virtual machine on a server. One or more snapshot backups may be examined to detect applications that executed on the server at a time the snapshot backup was taken. A determination may be made as to what applications that were identified are subject to a license. Licensing information may be provided that includes information associated with the one or more of the applications that are subject to the license.
Abstract:
Technologies are generally described to redirect local storage for embedded applications. In some examples, a computing device such as a redirection router, coupled to network-attached storage, may detect a request for an application being delivered from a server to a destination device such as a ubicomp device and intercept the requested application. The redirection router may determine whether the destination device has sufficient local storage. In response to determination that the destination device does not have sufficient local storage or a predefined configuration such as requesting device being configured for local storage, a reference to the client-side storage associated with the application may be replaced with a link, to the network-attached storage prior to delivery of the application. Subsequent retrievals of the application or portions thereof may be from the network-attached storage directly or via the redirection router.
Abstract:
Technologies are generally described for gathering survey response data from consumers by recovering taggants at disposal. Taggants may be incorporated into an on-product survey response label or into a portion of an item by a manufacturer. Prior to disposal, a consumer may remove one or more taggant incorporated survey response labels to indicate a survey response selection. Removal of the labels may also remove the associated taggants. Upon arrival at a disposal entity, the remaining taggants may be separated from the survey response label or item, machine-read, and/or quantified to generate survey response data. The quantified data may then be sent to another entity, such as the manufacturer, a seller, a marketing company, or similar entity.