Abstract:
Methods for forming non-volatile memory cells include: (a) providing a semiconductor substrate having at least two source/drain regions, and a dielectric material disposed on the substrate above at least one of the at least two source/drain regions wherein the dielectric material has an exposed surface, and wherein the at least two source/drain regions are separated by a recess trench having an exposed surface, wherein the trench extends downward into the substrate to a depth position below the at least two source/drain regions; (b) forming a charge-trapping layer on the exposed surfaces of the dielectric material and the recess trench; and (c) forming a gate above the charge-trapping layer.
Abstract:
A method of manufacturing a non-volatile semiconductor memory device includes forming a sub-gate without an additional mask. A low word-line resistance is formed by a metal silicide layer on a main gate of the memory device. In operation, application of a voltage to the sub-gate forms a transient state inversion layer that serves as a bit-line, so that no implantation is required to form the bit-line.
Abstract:
A NAND memory device is constructed using Silicon On Insulator (SOI) techniques. In particular, Thin Film Transistor (TFT) techniques can be used to fabricate the NAND Flash memory device. In both SOI and TFT structures, the body, or well, is isolated. This can be used to enable a bit-by-bit programming and erasing of individual cells and allows tight control of the threshold voltage, which can enable MLC operation.
Abstract:
A method for programming and erasing charge-trapping memory device is provided. The method includes applying a first negative voltage to a gate causing a dynamic balance state (RESET\ERASE state). Next, a positive voltage is applied to the gate to program the device. Then, a second negative voltage is applied to the gate to restore the device to the RESET\ERASE state.
Abstract:
An array of memory cells is arranged in columns and one or more rows on a semiconductor substrate. Each cell has a source, a drain, a first gate and a second gate. The array includes a plurality of gate control lines, each of which corresponds to one of the columns of the memory cells, where each control line connects to the first gate of the memory cell in the corresponding column in each of the rows; and one or more word lines, each of which corresponds to one of the rows of the memory cells, where each word line connects to the second gate of each of the cells in the corresponding row.
Abstract:
A method of stabilizing a memory device comprises trapping a plurality of electric charges in a charge trapping layer of the memory device. The charge trapping layer is positioned between a transistor control gate and a transistor channel region. The method further comprises applying a negative voltage bias to the transistor control gate. In another embodiment, the method further comprises performing a baking process on the memory device. The method further comprises performing a memory operation on the memory device.
Abstract:
A NAND-type flash memory device includes asymmetric floating gates overlying respective wordlines. A given floating gate is sufficiently coupled to its respective wordline such that a large gate (i.e., wordline) bias voltage will couple the floating gate with a voltage which can invert the channel under the floating gate. The inversion channel under the floating gate can thus serve as the source/drain. As a result, the memory device does not need a shallow junction, or an assist-gate. In addition, the memory device exhibits relatively low floating gate-to-floating gate (FG-FG) interference.
Abstract:
Memory cells comprising: a semiconductor substrate having a source region and a drain region disposed below a surface of the substrate and separated by a channel region; a tunnel dielectric structure disposed above the channel region, the tunnel dielectric structure comprising at least one layer having a small hole-tunneling-barrier height; a charge storage layer disposed above the tunnel dielectric structure; an insulating layer disposed above the charge storage layer; and a gate electrode disposed above the insulating layer are described along with arrays thereof and methods of operation.
Abstract:
A semiconductor device includes a semiconductor substrate having a first conductivity type. The semiconductor substrate includes a first diffusion region having the first conductivity type, a second diffusion region having the first conductivity type, and a channel region between the first diffusion region and the second diffusion region. The device further includes a control gate over the channel region and at least one sub-gate over the first and second diffusion regions.
Abstract:
A method for controlling current fluctuations during read and program operations in a memory structure is provided. The method includes applying a first voltage to a first gate of a word line decoder transistor. The method further includes applying a second voltage to a second gate of a bit line decoder transistor such that the first voltage is greater than the second voltage. The method also includes maintaining the source voltage of the bit line decoder transistor at about zero.