摘要:
An anode includes a base body of a sintered porous material of niobium particles, a surface layer made of crystalline niobium oxide formed on the base body, and an anode lead having partly buried in base body 1a. A dielectric layer containing amorphous niobium oxide is formed by anodic oxidation on the cathode. An electrolyte layer made of polypyrrole is formed on the dielectric layer and a cathode is formed on the electrolyte layer. A conductive adhesive layer and cathode terminal are formed on an upper surface of the cathode. The anode lead exposed from the base body is connected to an anode terminal by welding. In addition, a mold resin is formed to cover the second conductive layer, the cathode terminal and the anode terminal so as to expose cathode terminal and an end of anode terminal.
摘要:
The present invention provides a solid electrolytic capacitor with low leakage current. In the solid electrolytic capacitor, an anode has an anode lead made of tantalum, a surface layer made of niobium formed on the anode lead, and a rectangular block shaped base body having a porous sintered body made from niobium particles, and the anode lead is partially embedded in the base body. Onto the anode, an oxide layer made of niobium oxide, an electrically conductive polymer layer, and a cathode laminated with a first electrically conductive layer and a second electrically conductive layer are sequentially laminated. Onto the top surface of an area surrounding the cathode, a cathode terminal is formed through an electrically conductive adhesive layer. Also, an anode terminal is connected onto an edge of the anode lead.
摘要:
The nickel electrode for alkaline secondary battery according to the present invention is obtained by applying a paste containing active material particles comprising nickel hydroxide to a conductive substrate and drying the paste on the conductive substrate. In the above-mentioned nickel electrode for alkaline secondary battery, a conductive layer comprising sodium-containing cobalt oxide is formed on a surface of the active material particles and tungsten powder and/or tungsten compound powder is added on the active material particles.
摘要:
A nickel hydroxide electrode for an alkaline storage battery comprises titanium hydroxide formed on the surface of nickel hydroxide as a main active material impregnated into pores of a porous sintered substrate. An alkaline storage battery comprises a negative electrode and the nickel hydroxide electrode as a positive electrode. The alkaline storage battery provides a high discharge capacity even if the battery is charged under a high temperature atmosphere.
摘要:
A nickel electrode for alkaline storage battery according to the present invention is formed by applying a paste containing active material particles composed of nickel hydroxide to a conductive substrate and drying said paste, wherein a conductive layer consisting of sodium-containing cobalt oxide is formed on a surface of said active material particles, and titanium powder and/or titanium compound powder is added to the surface of said active material particles, and an alkaline storage battery according to the present invention uses as its positive electrode the above-mentioned nickel electrode for alkaline storage battery.
摘要:
A positive active material for sealed alkaline storage batteries is obtainable by subjecting &bgr;-nickel hydroxide, together with at least one additive selected from yttrium, gadolinium, erbium and ytterbium, and oxides, hydroxides, fluorides and chlorides thereof, to an oxidation treatment with an oxidizing agent in an aqueous alkaline solution. The positive active material contains nickel with a valence number in a range from 2.1 to 3.4.
摘要:
A sealed alkaline storage battery using, as a positive electrode active material, nickel oxyhydroxide including Mn as a solid-solution element and having a &ggr; ratio of 65 through 100%; a sealed alkaline storage battery using, as a positive electrode active material, nickel oxyhydroxide including as an additive or coated with a rare earth element and/or a rare earth compound in a ratio measured based on the rare earth element of 0.05 through 5 wt %; and a sealed alkaline storage battery including, as a positive electrode active material, nickel oxyhydroxide having a half-width of a peak in a lattice plane (003) in an X-ray diffraction pattern of 0.8° or more. The pressure within the battery is not largely increased for a long period of charge-discharge cycles, and hence, the electrolyte hardly leaks.
摘要:
A sealed alkaline-zinc storage battery includes a battery can, a hollow positive electrode disposed within the battery can in electrical contact therewith and containing a positive active material including nickle hydroxide, a negative electrode disposed inwardly of the positive electrode and containing a negative active material including zinc, a separator disposed between the positive and negative electrodes, a negative current collector inserted into the negative electrode, and an alkaline electrolyte filled in the battery can and impregnated into the positive electrode, negative electrode and separator. The positive electrode, negative electrode, separator, negative current collector and electrolyte together account for at least 75% of an internal volume of the battery can. The alkaline electrolyte is in the 30 to 45 mass % concentration range and has a total water content in the range of 0.5 to 0.9 g for each theoretical capacity of the negative electrode expressed as 1 Ah (ampere-hour).
摘要:
In the non-sintered nickel electrode for an alkaline storage battery according to the invention, a yttrium metal powder and/or a yttrium compound powder has been added to a particulate active material comprising composite particles each consisting of a nickel hydroxide core and a sodium-doped cobalt compound shell. Because the yttrium metal powder and/or yttrium compound powder inhibits the diffusion of cobalt into the nickel hydroxide core, the non-sintered nickel electrode of the invention exhibits a high utilization efficiency not only in an initial phase of charge-discharge cycling but over a long time of use. Moreover, because the yttrium metal powder and/or yttrium compound powder enhances the oxygen overpotential, the non-sintered nickel electrode for an alkaline storage battery according to the invention shows very satisfactory charge characteristics particularly at high temperatures.
摘要:
A zinc alkaline cell is formed by using an anode active material which contains a non-amalgamated zinc alloy powder having a bulk specific gravity ranging from approximately 2.90 to 3.50 (grams per cm.sup.3) and containing a predetermined amount of indium coated on a surface of the non-amalgamated zinc alloy powder containing a predetermined amount of aluminum and/or a predetermined amount of calcium as a zinc alloy powder component, other than unavoidable impurities. The zinc alkaline cell can achieve corrosive resistance and discharge performance as a cell and it is comparable with cells formed by using amalgamated zinc alloy powder which has been practically employed.