摘要:
A semiconductor device of this invention includes a first circuit for initializing a predetermined circuit in accordance with the level of a power source voltage, a second circuit for controlling the output from the first circuit by activation or deactivation, and an activation control circuit for activating or deactivating the second circuit in accordance with external input.
摘要:
A non-volatile semiconductor device has a memory cell array having electrically erasable programmable non-volatile memory cells, reprogramming and retrieval circuits that temporarily store data to be programmed in the memory cell array and sense data retrieved from the memory cell array. Each reprogramming and retrieval circuit has first and second latches that are selectively connected to the memory cell array and transfer data. A controller controls the reprogramming and retrieval circuits on a data-reprogramming operation to and a data-retrieval operation from the memory cell array. Each reprogramming and retrieval circuit has a multilevel logical operation mode and a caching operation mode. In the multilevel logical operation mode, re-programming and retrieval of upper and lower bits of two-bit four-level data is performed using the first and the second latches to store the two-bit four-level data in one of the memory cells in a predetermined threshold level range. In the caching operation mode, data transfer between one of the memory cells selected in accordance with a first address and the first latch is performed while data transfer is performed between the second latch and input/output terminals in accordance with a second address with respect to one-bit two-level data to be stored in one of the memory cells.
摘要:
The booster circuit of the present invention includes a first booster cell section in which one or more booster cells are connected in series, and a second booster cell section having an end which is connected to the first booster cell section, in which a plurality of booster cell groups each containing one or more booster cells connected in series, are connected to each other in parallel.
摘要:
A nonvolatile semiconductor memory device comprises a memory cell array in which a plurality of memory cell units are arranged in a matrix, and a first and second common signal lines for exchanging signals with the memory cell array, wherein each of the memory cell units contains a nonvolatile memory section having at least one nonvolatile memory cell, a first select MOS transistor for making the nonvolatile memory section conducting to the first common signal line, and a second select MOS transistor with a threshold voltage different from that of the first select MOS transistor for making the nonvolatile memory section conducting to the second common signal line.
摘要:
A nonvolatile semiconductor memory device comprises a memory cell array in which a plurality of memory cell units are arranged in a matrix, and a first and second common signal lines for exchanging signals with the memory cell array, wherein each of the memory cell units contains a nonvolatile memory section having at least one nonvolatile memory cell, a first select MOS transistor for making the nonvolatile memory section conducting to the first common signal line, and a second select MOS transistor with a threshold voltage different from that of the first select MOS transistor for making the nonvolatile memory section conducting to the second common signal line.
摘要:
A nonvolatile semiconductor memory device has reduced parasitic capacitance at a select transistor obtained by providing a depletion-mode select transistor with a charge accumulation layer, virtually making a gate insulating film thicker, or providing under the gate insulating film a channel layer that is of a same conductivity type as that of a source and drain regions and connects thereto, thereby enabling the potential of the select gate to be almost fixed at a desired value, preventing a faulty operation and making it possible to cause the select transistor to operate at high speed.
摘要:
A nonvolatile semiconductor memory device comprises a memory cell array in which a plurality of memory cell units are arranged in a matrix, and a first and second common signal lines for exchanging signals with the memory cell array, wherein each of the memory cell units contains a nonvolatile memory section having at least one nonvolatile memory cell, a first select MOS transistor for making the nonvolatile memory section conducting to the first common signal line, and a second select MOS transistor with a threshold voltage different from that of the first select MOS transistor for making the nonvolatile memory section conducting to the second common signal line.
摘要:
A semiconductor integrated circuit includes a limiter circuit for outputting a voltage determining flag in order to set a boosted voltage level of a booster circuit to be a predetermined value, and a monitoring circuit for monitoring a monitoring node of the limiter circuit to output a monitoring signal for the stabilization of a boosted voltage to a first external terminal. The monitoring circuit detects a first level change of the voltage determining flag from “H” to “L” after the starting of the operation of the limiter circuit, by means of a comparator, to which an external power supply voltage and external reference voltage supplied from second and third external terminals are given, and thereafter, outputs a monitoring signal for holding a constant logical level during the operation of the limiter circuit. In order to provide a voltage trimming function, a voltage intended to be set in an external terminal may be given from the outside to deactivate a feedback system of the limiter circuit to operate a resistance value of the limiter circuit to detect and store a limiter flag. Thus, there is provided a semiconductor integrated circuit capable of simply monitoring the output voltage state of an internal power supply circuit by the external terminal and easily trimming an internal voltage.
摘要:
In order to avoid any malfunction for a temporary change in power supply voltage and suppress decrease in internal power supply voltage when transition is effected from the stand-by mode to the active mode, the disclosed semiconductor integrated circuit is provided with a detecting circuit which prevents malfunction in a temporary change in the power supply voltage from occurring by changing a detection level according to when the power supply voltage is increased or decreased. Further, a decrease in the internal power supply voltage immediately after the transition from the stand-by mode to the active mode is suppressed by employing a PMOS down converter in the stand-by mode and an NMOS down converter in the active mode, and setting an internal power supply voltage of the PMOS down converter in the stand-by mode higher than in the active mode. A down converter is formed in a lower layer of an external power supply line and peripheral circuit blocks are arranged in a lower layer of internal power supply lines on both sides of the external power supply line symmetrically with respect thereto, whereby a power supply distance of the power supply voltage is minimized and controllability of the internal power supply voltage is improved.
摘要:
In order to avoid any malfunction for a temporary change in power supply voltage and suppress decrease in internal power supply voltage when transition is effected from the stand-by mode to the active mode, the disclosed semiconductor integrated circuit is provided with a detecting circuit which prevents malfunction in a temporary change in the power supply voltage from occurring by changing a detection level according to when the power supply voltage is increased or decreased. Further, a decrease in the internal power supply voltage immediately after the transition from the stand-by mode to the active mode is suppressed by employing a PMOS down converter in the stand-by mode and an NMOS down converter in the active mode, and setting an internal power supply voltage of the PMOS down converter in the stand-by mode higher than in the active mode. A down converter is formed in a lower layer of an external power supply line and peripheral circuit blocks are arranged in a lower layer of internal power supply lines on both sides of the external power supply line symmetrically with respect thereto, whereby a power supply distance of the power supply voltage is minimized and controllability of the internal power supply voltage is improved.