Abstract:
Various embodiments are disclosed relating to a gain control for a wireless receiver. In an example embodiment, a wireless receiver is provided that may include an analog gain circuit adapted to provide a variable analog gain on a received input signal, an analog to digital converter (ADC) having an input coupled to an output of the analog gain circuit, and a digital gain circuit having an input coupled to an output of the ADC and adapted to provide a variable digital gain on a received digital signal from the ADC. According to an example embodiment, the wireless transceiver may decrease a gain of the analog gain circuit while maintaining a gain of the digital gain circuit substantially constant for a receiver input signal level that increases from a first input signal level up to at least a first test signal level. In addition, in an example embodiment, the wireless receiver may also decrease a gain of the analog gain circuit while maintaining a gain of the digital gain circuit substantially constant for a signal level of the input signal that increases from a first input signal level up to at least a blocker test signal level.
Abstract:
A portable computing device includes a three-dimensional (3D) touch screen and a core module. The 3D touch screen includes a two-dimensional (2D) touch screen section and a plurality of radio frequency (RF) radar modules. The core module is operable to determine whether the 3D touch screen is in a 3D mode or a 2D mode. When the 3D touch screen is in the 3D mode, the core module is further operable to receive one or more radar signals via one or more of the plurality of RF radar modules and interpret the one or more radar signals to produce a 3D input signal.
Abstract:
A self-testing transceiver comprises a receiver, and a transmitter including a power amplifier (PA) and a plurality of transmitter pre-PA stages. The plurality of transmitter pre-PA stages are configured to generate a communication signal at a receive frequency of the transceiver and the receiver is configured to process another communication signal at a transmit frequency of the transceiver, thereby enabling transceiver self-testing. A method for use by a transceiver for self-testing comprises generating a first communication signal at a transmit frequency of the transceiver by a transmitter of the transceiver, processing the first communication signal by a receiver of the transceiver, generating a second communication signal at a receive frequency of the transceiver by the transmitter, and processing the second communication signal by the receiver. The described generating and processing of the first and second communication signals resulting in self-testing by the transceiver.
Abstract:
A radio frequency (RF) transmitter front-end includes a digital to analog conversion module and a power amplifier module. The digital to analog conversion module is coupled to convert amplitude information into analog amplitude adjust signals when a first mode is active and is coupled to convert power level information into analog power level signals when a second mode is active. The power amplifier module is coupled to amplify first phase modulated RF signals in accordance with the analog amplitude adjust signals to produce first outbound RF signals when the first mode is active and is coupled to amplify second phase modulated RF signals in accordance with the analog power level signals to produce second outbound RF signals when the second mode is active.
Abstract:
According to one embodiment, a variable gain control transformer comprises a primary winding connected to differential inputs of the variable gain control transformer, a secondary winding for providing a single ended output to a load, and an output control circuit coupled to the secondary winding, the output control circuit configured to provide up to approximately 12 dB of gain control. Variable gain control may be achieved using first and second variable resistors of the output control circuit, wherein the first and second variable resistors are implemented by respective first and second pluralities of source-drain resistances produced by respective corresponding first and second pluralities of selectable field-effect transistors (FETs). In one embodiment, the variable gain control transformer further comprises a variable capacitance tuning circuit coupled between the differential inputs, the variable capacitance tuning circuit implemented using a plurality of selectable fixed capacitance unit cells.
Abstract:
Certain embodiments of the invention may be found in a method and system for process, voltage, and temperature (PVT) correction. The method may comprise first determining an input voltage of a transistor coupled in an inphase (I) path of a receiver and an input voltage of a transistor coupled in a quadrature (Q) path of said receiver. An amplifier gain setting may be determined from a lookup table based on at least one of a plurality of parameters related to the first determining. A gain of at least one amplifier in the receiver may be adjusted based on the amplifier gain setting determined from the lookup table.
Abstract:
A technique to remove second order and third order nonlinearity distortions caused by a blocker signal at an input of a radio receiver. An envelope detector is utilized at an input of the RF front-end of the receiver to obtain a magnitude of the overall signal. The output of the envelope detector is then processed at baseband to estimate coefficients that relate to the distortion. Once the coefficients are obtained, the coefficients are applied at an I/Q imbalance correction stage to also correct for the distortion by cancelling the distortion from the received signal.
Abstract:
A calibration circuit measures the variation in a filter resistor within the analog domain of the envelope path of a polar transmitter and produces a digital value representative of that variation. A digital processor determines a digital control signal from the digital value that is used to compensate, in the digital domain of the envelope path, for the variation in the filter resistor in the analog domain.
Abstract:
A radio frequency (RF) integrated circuit (IC) operable to support wireless communications is provided. In one embodiment, the RF IC includes an advanced high-performance (AHB) bus matrix, a microprocessor core coupled to the AHB bus matrix, a plurality of processing modules wherein each processing module is operable to support one or more functions of the RF IC, and a plurality of power islands. Each power island is associated with one or more functions of the RF IC. This arrangement allows power islands coupled to the processing modules associated with the one or more functions associated with the power island to supply power for the processing modules associated with the one or more functions associated with the power island. Power from the power island(s) to the processing module(s) may be reduced or secured when the one or more functions associated with the power island is not required.
Abstract:
At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.