Abstract:
A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
Abstract:
A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
Abstract:
A 4D device comprises a 2D multi-core logic and a 3D memory stack connected through the memory stack sidewall using a fine pitch T&J connection. The 3D memory in the stack is thinned from the original wafer thickness to no remaining Si. A tongue and groove device at the memory wafer top and bottom surfaces allows an accurate stack alignment. The memory stack also has micro-channels on the backside to allow fluid cooling. The memory stack is further diced at the fixed clock-cycle distance and is flipped on its side and re-assembled on to a template into a pseudo-wafer format. The top side wall of the assembly is polished and built with BEOL to fan-out and use the T&J fine pitch connection to join to the 2D logic wafer. The other side of the memory stack is polished, fanned-out, and bumped with C4 solder. The invention also comprises a process for manufacturing the device. In another aspect, the invention comprises a 4D process and device for over 50× greater than 2D memory density per die and an ultra high density memory.
Abstract:
A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
Abstract:
A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
Abstract:
Lenses and methods for adjusting the focus of a lens include dividing multiple light sensors in a lens into four quadrants. A position of the lens relative to occlusion along a top and bottom edge of the lens is determined based on lengths of bit sequences from light sensors in each of the four quadrants. An optimal focal length for the lens is determined based on the position of the lens. The focal length of the lens is adjusted to match the optimal focal length.
Abstract:
A volumetric integrated circuit manufacturing method is provided. The method includes assembling a slab element of elongate chips, exposing a wiring layer between adjacent elongate chips of the slab element, metallizing a surface of the slab element at and around the exposed wiring layer to form a metallized surface electrically coupled to the wiring layer and passivating the metallized surface to hermetically seal the metallized surface.