Abstract:
To assist a surgeon performing a medical procedure, auxiliary images generally indicating internal details of an anatomic structure being treated are displayed and manipulated by the surgeon on a computer display screen to supplement primary images generally of an external view of the anatomic structure. A master input device controlling a robotic arm in a first mode may be switched by the surgeon to a second mode in order to function instead as a mouse-like pointing device to facilitate the surgeon performing such auxiliary information display and manipulation.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Integrated table motion includes a computer-assisted device. The computer-assisted device includes articulating means; means for receiving, via a means for communicatively coupling the computer-assisted device with a table means, a table movement request from a table command means, the table means being separate from the computer-assisted device; means for determining whether the table movement request should be allowed; and means for allowing the table means to perform the table movement request based on determining that the table movement request should be allowed.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
A system and method of breakaway clutching in a device includes an arm having a first joint and a control unit coupled to the arm. The control unit includes one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold. Movement of the first joint is more restricted in the first state than in the second state. The control unit further switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold. The first threshold is based on at least one first property of the arm. The speed threshold is based on at least one second property of the arm.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Inter-operative switching of tools in a robotic system includes a system with a plurality of manipulators and a controller. The controller is configured to detect mounting of a first imaging device to a first manipulator of the plurality of manipulators, the first imaging device having a first reference frame; in response to detecting the mounting of the first imaging device, control a tool relative to the first reference frame using a second manipulator of the plurality of manipulators, the tool being mounted to the second manipulator; detect mounting of a second imaging device to a third manipulator of the plurality of manipulators, the second imaging device having a second reference frame; and in response to detecting the mounting of the second imaging device, control the tool relative to the second reference frame using the second manipulator.
Abstract:
A system and method of breakaway clutching in a device includes an arm including a first joint and a control unit coupled to the arm. The control unit includes one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold, wherein movement of the first joint is more restricted in the first state of the first joint than in the second state of the first joint, switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold, and prevents the switching of the first joint from the first state to the second state when the arm is in a predetermined mode.