摘要:
A magnifying imaging optical unit has at least four mirrors to image an object field in an object plane into an image field in an image plane. An absolute value of the Petzval radius of the image field is greater than 500 mm. The imaging optical unit can be used to inspect with sufficient imaging quality relatively large mask sections of lithography masks used during projection exposure to produce large scale integrated semiconductor components.
摘要:
The disclosure generally relates to imaging optical systems that include a plurality of mirrors, which image an object field lying in an object plane in an image field lying in an image plane, where at least one of the mirrors has a through-hole for imaging light to pass through. The disclosure also generally relates to projection exposure installations that include such imaging optical systems, methods of using such projection exposure installations, and components made by such methods.
摘要:
A projection optics for microlithography, which images an object field in an object plane into an image field in an image plane, where the projection optics include at least one curved mirror and including at least one refractive subunit, as well as related systems, components, methods and products prepared by such methods, are disclosed.
摘要:
A projection objective for microlithography is used for imaging an object field in an object plane into an image field in an image plane. The projection objective comprises at least six mirrors of which at least one mirror has a freeform reflecting surface. The ratio between an overall length (T) of the projection objective and an object image shift (dOIS) can be smaller than 12. The image plane is the first field plane of the projection objective downstream of the object plane. The projection objective can have a plurality of mirrors, wherein the ratio between an overall length (T) and an object image shift (dOIS) is smaller than 2.
摘要:
The disclosure relates to an optical projection arrangement that can be used to image a reticle onto a substrate. The projection arrangement includes reflective elements, by which a ray path is defined. A combination stop is in a pupil of the ray path. The combination stop has a first opening (aperture opening) for use as an aperture stop. The combination stop also has a second opening for allowing passage of a ray bundle of the ray path, such that the combination stop acts as a combined aperture stop and stray light stop. In addition, the disclosure relates to a corresponding combination stop for optical arrangements, as well as related systems, components and methods.
摘要:
A catadioptric projection objective for imaging an off-axis object field arranged in an object surface of the projection objective onto an off-axis image field arranged in an image surface of the projection objective has a front lens group, a mirror group comprising four mirrors and having an object side mirror group entry, an image side mirror group exit, and a mirror group plane aligned transversely to the optical axis and arranged geometrically between the mirror group entry and the mirror group exit; and a rear lens group. The mirrors of the mirror group are arranged such that at least one intermediate image is positioned inside the mirror group between mirror group entry and mirror group exit, and that radiation coming from the mirror group entry passes at least four times through the mirror group plane and is reflected at least twice on a concave mirror surface of the mirror group prior to exiting the mirror group at the mirror group exit. The mirror group entry is positioned in a region where radiation exiting the front lens group has an entry chief ray height. A second reflecting area is positioned in a region where radiation impinging on the second mirror has a second chief ray height deviating from the entry chief ray height in a first direction; and a fourth reflecting area is positioned in a region where radiation impinging on the fourth mirror has a fourth chief ray height deviating from the entry chief ray height in a second direction opposite to the first direction.
摘要:
The disclosure relates to an optical projection arrangement that can be used to image a reticle onto a substrate. The projection arrangement includes reflective elements, by which a ray path is defined. A combination stop is in a pupil of the ray path. The combination stop has a first opening (aperture opening) for use as an aperture stop. The combination stop also has a second opening for allowing passage of a ray bundle of the ray path, such that the combination stop acts as a combined aperture stop and stray light stop. In addition, the disclosure relates to a corresponding combination stop for optical arrangements, as well as related systems, components and methods.
摘要:
An imaging optical system has a plurality of mirrors, which image an object field in an object plane into an image field in an image plane. A reflection face of at least one of the mirrors is configured as a free form face which cannot be described by a rotationally symmetrical function. The object field has an aspect ratio greater than 1. A ratio of a minimal and a maximal transverse dimension of the object field can be less than 0.9.
摘要:
An optical system has a plurality of elements arranged to image radiation at a wavelength λ from an object surface to an image surface, the elements include mirror elements having a reflective surface positioned at a path of radiation. At least one of the mirror elements is a pupil mirror having a pupil mirror surface arranged at or near to a pupil surface of the optical system. At least one of the remaining mirror elements is a highly loaded mirror having a mirror surface arranged at a position where at least one of a largest value of a range of angles of incidence and a largest value of an average angle incidence of all remaining mirrors occurs, where the remaining mirrors include all mirrors except for the pupil mirror. The pupil mirror surface is formed by a reflective coating designed as a one-dimensionally graded coating including a multilayer stack of layers of different materials, the layers having a geometrical layer thickness which varies according to a first grading function in a first direction of the coating and which is substantially constant in a second direction perpendicular to the first direction. The mirror surface of the highly loaded mirror is coated with a reflective mirror coating designed as a graded coating according to a second grading function.
摘要:
An imaging optics has at least six mirrors, which image an object field in an object plane in an image field in an image plane. An entry pupil of the imaging optics is arranged in the imaging beam path in front of the object field. At least one of the mirrors has a through-opening for the passage of imaging light. A mechanically accessible pupil, in which an obscuration stop is arranged for the central shading of the pupil of the imaging optics, is located in a pupil plane in the imaging beam path between the object field and a first of the through-openings. A first imaging part beam directly after a second mirror in the imaging beam path after the object field and a second imaging part beam directly after a fourth mirror in the imaging beam path after the object field intersect one another in an intersection region. The result is an imaging optics, in which a handleable combination of small imaging errors, manageable production and a good throughput for the imaging light is achieved.