摘要:
One embodiment of the present invention sets forth a technique for unifying the addressing of multiple distinct parallel memory spaces into a single address space for a thread. A unified memory space address is converted into an address that accesses one of the parallel memory spaces for that thread. A single type of load or store instruction may be used that specifies the unified memory space address for a thread instead of using a different type of load or store instruction to access each of the distinct parallel memory spaces.
摘要:
Parallelism in a parallel processing subsystem is exploited in a scalable manner. A problem to be solved can be hierarchically decomposed into at least two levels of sub-problems. Individual threads of program execution are defined to solve the lowest-level sub-problems. The threads are grouped into one or more thread arrays, each of which solves a higher-level sub-problem. The thread arrays are executable by processing cores, each of which can execute at least one thread array at a time. Thread arrays can be grouped into grids of independent thread arrays, which solve still higher-level sub-problems or an entire problem. Thread arrays within a grid, or entire grids, can be distributed across all of the available processing cores as available in a particular system implementation.
摘要:
The invention sets forth an L1 cache architecture that includes a crossbar unit configured to transmit data associated with both read data requests and write data requests. Data associated with read data requests is retrieved from a cache memory and transmitted to the client subsystems. Similarly, data associated with write data requests is transmitted from the client subsystems to the cache memory. To allow for the transmission of both read and write data on the crossbar unit, an arbiter is configured to schedule the crossbar unit transmissions as well and arbitrate between data requests received from the client subsystems.
摘要:
One embodiment of the present invention sets forth a technique for unifying the addressing of multiple distinct parallel memory spaces into a single address space for a thread. A unified memory space address is converted into an address that accesses one of the parallel memory spaces for that thread. A single type of load or store instruction may be used that specifies the unified memory space address for a thread instead of using a different type of load or store instruction to access each of the distinct parallel memory spaces.
摘要:
One embodiment of the present invention sets forth a mechanism for managing thread divergence in a thread group executing a multithreaded processor. A unanimous branch instruction, when executed, causes all the active threads in the thread group to branch only when each thread in the thread group agrees to take the branch. In such a manner, thread divergence is eliminated. A branch-any instruction, when executed, causes all the active threads in the thread group to branch when at least one thread in the thread group agrees to take the branch.
摘要:
A graphics processing unit can queue a large number of texture requests to balance out the variability of texture requests without the need for a large texture request buffer. A dedicated texture request buffer queues the relatively small texture commands and parameters. Additionally, for each queued texture command, an associated set of texture arguments, which are typically much larger than the texture command, are stored in a general purpose register. The texture unit retrieves texture commands from the texture request buffer and then fetches the associated texture arguments from the appropriate general purpose register. The texture arguments may be stored in the general purpose register designated as the destination of the final texture value computed by the texture unit. Because the destination register must be allocated for the final texture value as texture commands are queued, storing the texture arguments in this register does not consume any additional registers.
摘要:
Parallel data processing systems and methods use cooperative thread arrays (CTAs), i.e., groups of multiple threads that concurrently execute the same program on an input data set to produce an output data set. Each thread in a CTA has a unique identifier (thread ID) that can be assigned at thread launch time. The thread ID controls various aspects of the thread's processing behavior such as the portion of the input data set to be processed by each thread, the portion of an output data set to be produced by each thread, and/or sharing of intermediate results among threads. Mechanisms for loading and launching CTAs in a representative processing core and for synchronizing threads within a CTA are also described.
摘要:
A linear transform such as a Fast Fourier Transform (FFT) is performed on an input data set having a number of points using one or more arrays of concurrent threads that are capable of sharing data with each other. Each thread of one thread array reads two or more of the points, performs an appropriate “butterfly” calculation to generate two or more new points, then stores the new points in a memory location that is accessible to other threads of the array. Each thread determines which points it is to read based at least in part on a unique thread identifier assigned thereto. Multiple transform stages can be handled by a single thread array, or different levels can be handled by different thread arrays.
摘要:
A system includes a graphics processing unit with a processor responsive to a debug instruction that initiates the storage of execution state information. A memory stores the execution state information. A central processing unit executes a debugging program to analyze the execution state information.
摘要:
Circuits, methods, and apparatus that provide the die area and power savings of a single-ported memory with the performance advantages of a multiported memory. One example provides register allocation methods for storing data in a multiple-bank register file. In a thin register allocation method, data for a process is stored in a single bank. In this way, different processes use different banks to avoid conflicts. In a fat register allocation method, processes store data in each bank. In this way, if one process uses a large number of registers, those registers are spread among the banks, avoiding a situation where one bank is filled and other processes are forced to share a reduced number of banks. In a hybrid register allocation method, processes store data in more than one bank, but fewer than all the banks. Each of these methods may be combined in varying ways.