摘要:
A signal generator consistent with certain embodiments of the invention has a reference clock (34) producing a periodic sequence of reference clock output pulses. A window generator (38) generates a plurality of time windows through which a selected plurality of the reference clock output pulses are selectively passed as windowed pulses so that the windowed pulses form a selected pattern of pulses. A programmable delay (46) has resolution of delay that has finer time granularity in delay than the period of the clock output pulses. The programmable delay (46) delays each of the windowed pulses by a programmed delay time to thereby provide a timing correction to the windowed pulses to produce an output pattern of pulses.
摘要:
A frequency extension circuit, consistent with certain embodiments of the present invention has a first delay line (108) having a plurality of taps. The delay line receives a reference clock at an input with a clock rate of FREF. A second delay line (104, 150) also receives the reference clock at an input. A logic circuit (130, 134, . . . , 138, 140) combines signals from the delay line taps of the first delay line (108) with signals from the delay line taps of the second and/or first delay line (104, 150, 108) to produce a collection of clock pulses having a combined clock rate of FREF*2N. At least one of the delay lines can be locked to the reference clock using a delay locked loop. The clock pulses can be logically combined with a seed register (204) contents to produce a recursive sequence or with data for convolutional encoding, or with pilot data for correlation in a CDMA transceiver.
摘要:
A reconfigurable processor circuit (200) consistent with certain embodiments of the present invention has an array of configurable circuit blocks (208), wherein certain of the configurable circuit blocks (208) comprise one of configurable arithmetic logic units and clocked digital logic circuits. A control processor (218) configures a function of a plurality of the configurable circuit blocks. A memory (224) stores program instructions used by the control processor (218). A multiple frequency generator (230) receives a reference clock and synthesizes the plurality of clock signals therefrom, each clock signal being configured in frequency by the control processor (218). A timing control circuit (236) receives the plurality of clock signals, allocates the plurality of clock signals of different frequency among the plurality of circuit blocks and routes the clock signals to the circuit blocks, wherein the timing control circuit (236) operates under control of the control processor (218).
摘要:
Multi-band antenna systems (116, 1100,1200) for wireless communication devices (100) for use in wireless communications systems (1300) are disclosed. The multi-band antennas systems include a conductive film (204, 1104, 1204) that include ground plane areas (206, 1106, 1206) and conductive traces (208, 1108, 1208) that substantially circumscribe areas that include a plurality of interconnected swaths (222-230, 1116-1120, 1216-1220). The antenna systems are capable of operating in a first common mode for supporting communications in a first frequency band, and in a second common mode and differential mode for supporting communications in a second frequency band. Nulls of gain patterns of the second common and differential mode are offset, such that sum of the gain patterns does not include nulls.
摘要:
A delay locked loop circuit 300 consistent with certain embodiments of the present invention has a delay line 304 with coarse adjustment 322 and fine adjustment 360 inputs. The coarse adjustment input 322 provides an overall adjustment of all of the delay line's delay elements while the fine adjustment inputs 360 permit adjusting the individual delay value of each delay element. A first multiplexer 330 receives the delay tap outputs and produces a first selected output while a second multiplexer 334 also receives the delay tap outputs and produces a second selected output. A measurement circuit 344 measures a difference between the first and second output as a measurement of a selected delay element's delay value. An error calculator 346 receives the output of the measurement circuit and calculates fine adjustment voltages for each of the selected delay elements. A tuning circuit 350 applies the fine adjustment voltages to the fine adjustment inputs of the delay line 304.
摘要:
A feedforward amplifier (150) according to the present invention uses a direct coupling of an amplifier stage (158) with the amplifier's load (RL). The main amplifier (202) is coupled through a transmission line (210) to the load. This direct coupled amplifier stage (158) is driven by a signal that induces a very low impedance in parallel with the load to the error signal, but appears as an open circuit to the desired signal so that the desired signal from the main amplifier is substantially unaffected.
摘要:
A tunable inductor circuit and phase tuning circuit utilizing a tunable inductor circuit for dynamically controlling signal phase delay in RF/Microwave Circuits and related applications. The tunable inductor includes an inductor and a voltage variable capacitor connected to each other. The tunable inductor and voltage variable capacitor can be connected to each other in parallel or in series. The phase tuning circuit includes at least one tunable inductor circuit and at least one voltage variable capacitor coupled to the at least one tunable inductor circuit, wherein the at least one tunable inductor circuit and the voltage variable capacitor are responsive to control signals to alter a tuning characteristic of the phase tuning circuit.
摘要:
A compensated signal source (210, 220) utilizes baseband signals and a radio frequency carrier signal to generate a set of source output signals (226, 227) which are coupled to a particular circuit (230, 240, 250). The signal source (210, 220) is operable in a characterizing mode in which a test configuration is applied, and outputs from the signal source and the particular circuit measured to develop parameters representing imperfections within the signal source and within the particular circuit. The signal source (210, 220) is operable in a normal mode, in which compensation based on the measured parameters is applied to account for the imperfections. In a preferred embodiment, the particular circuit (230, 240, 250) and compensated signal source (210, 220) form part of an amplifier (200) that implements linear amplification using nonlinear components (LINC) techniques.
摘要:
A voltage regulator (200) includes a controller (204) which selectively activates a plurality of switching means (208, 210, 214, and 212) in order to select between a first current loop in which an energy storage device is charged by an input supply and a second loop in which the energy storage device is coupled to the output terminal (242) of the regulator (200). The switching from the second current loop to the first is governed by the controller (204) determining that the loop current in the second loop has reached a predetermined level. A first switching audio amplifier (300) is disclosed which uses the voltage regulator (200) to provide a continuously variable output voltage (318) in order to provide for high quality amplification which is independent of the volume setting. A second audio amplifier (400) includes a converter (436) which provides discrete voltage levels to a full wave bridge in order to provide improved audio output.
摘要:
A voltage regulator (200) includes a controller (204) which selectively activates a plurality of switching means (208, 210, 214, and 212) in order to select between a first current loop in which an energy storage device is charged by an input supply and a second loop in which the energy storage device is coupled to the output terminal (242) of the regulator (200). The switching from the second current loop to the first is governed by the controller (204) determining that the loop current in the second loop has reached a predetermined level. A first switching audio amplifier (300) is disclosed which uses the voltage regulator (200) to provide a continuously variable output voltage (318) in order to provide for high quality amplification which is independent of the volume setting. A second audio amplifier (400)includes a converter (436) which provides discrete voltage levels to a full wave bridge in order to provide improved audio output.