Abstract:
According to one embodiment, there is provided an active material for a battery. The active material includes secondary particle which contains primary particles of a monoclinic β-type titanium composite oxide having an average primary particle diameter of 1 nm to 10 μm. The secondary particle has an average secondary particle diameter of 1 μm to 100 μm. The secondary particle has compression fracture strength of 20 MPa or more.
Abstract:
According to one embodiment, a battery active material is provided. The battery active material includes monoclinic complex oxide represented by the formula LixTi1−yM1yNb2−zM2zO7+δ (0≦x≦5, 0≦y≦1, 0≦z≦2, −0.3≦δ≦0.3). In the above formula, M1 is at least one element selected from the group consisting of Zr, Si and Sn, and M2 is at least one element selected from the group consisting of V, Ta and Bi.
Abstract:
According to one embodiment, an active material is provided. This active material includes active material particles each allowing lithium to be inserted thereinto and extracted therefrom in the range of 0.5 V to 2V (vs. Li+/Li), and carbon material layers at least partially coating the active material particles. The active material has a BET specific surface area S of 2 m2/g to 20 m2/g in accordance with a nitrogen adsorption method. Between the BET specific surface area S and the proportion M (mass %) of the mass of the carbon material layers to the total mass of the active material particles and carbon material layers, the ratio of S/M (m2/g) meets 0.5≦S/M≦5.
Abstract:
According to one embodiment, an electrode is provided. The electrode includes a current collector and an electrode layer formed on the current collector. The electrode layer contains particles of an active material containing niobium-titanium composite oxide. A mode diameter in a pore diameter distribution of the electrode layer obtained by mercury porosimetry is within a range of 0.1 μm to 0.2 μm.
Abstract:
According to one embodiment, there is provided an active material. The active material includes a composite oxide having an orthorhombic structure. The composite oxide is represented by the general formula Ti2(Nb1-xTax)2O9 (0≦x≦1). The composite oxide has an average valence of niobium and/or tantalum of 4.95 or more.
Abstract:
According to one embodiment, there is provided a composite. The composite includes active material particles of a titanium composite oxide or oxide of titanium, and a graphene structure including a carbon material. The carbon material has a graphene framework defining a graphene surface. The graphene structure is located in between the active material particles. The graphene structure has at least one side surface in contact with the active material particle. The side surface includes the carbon material whose graphene surface is slanted relative to the side surface.
Abstract:
According to one embodiment, there is provided an active material includes monoclinic niobium-titanium composite oxide particles. The monoclinic niobium-titanium composite oxide particles contain a rutile type oxide.
Abstract:
A production method of a battery active material of the present embodiment includes a step of obtaining a coprecipitated product containing Ti and Nb by mixing a solution with a pH of 5 or lower, in which a Ti compound is dissolved, and a solution with a pH of 5 or lower, in which a Nb compound is dissolved, such that molar ratio of Ti and Nb (Nb/Ti) is adjusted within a range of 1≦Nb/Ti≦28, and then further mixing with an alkali solution with a pH of 8 or higher; and a step of burning the coprecipitated product under condition of 635° C. or higher and 1200° C. or lower.
Abstract:
According to one embodiment, there is provided a active material for a battery including a complex oxide containing niobium and titanium. A ratio MNb/MTi of a mole of niobium MNb to a mole of titanium MTi in the active material satisfies either the following equation (I) or (II). 0.5≦MNb/MTi